Models for Pigment Pattern Formation in the Skin of Fishes

  • K. J. Painter
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 121)


The colours and patterns of the skin provides a fascinating system used for the study of pattern formation in experimental and theoretical research alike. In this article, a brief review of recent work on the pigmentation of the skin is presented. A mathematical model is shown to be able to capture many features associated with the evolving colour patterns on juveniles belonging to the genus of marine angelfish, Pomacanthus. Different forms of growth lead to very different patterning phenomena. The development of computational tools which can accurately reflect the geometry and growth of the real system will allow studies of the relationship between growth and patterning in species such as Pomacanthus or zebrafish.


Neural Crest Pigment Cell Domain Growth Steel Factor Homogeneous Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arcuri, P. & Murray, J.D., 1986. Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Math. Biol., 24, 141–165.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bagnara, J.T. & Hadley, M.E., 1973. Chromatophores and Color Change. Eaglewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  3. [3]
    Bagnara, J.T., Matsumoto, J., Ferris, W., Frost, S.K., Turner, W.A., Tchen, T.T., & Taylor, J.D., 1979. Common origin of pigment cells. Science, 182, 1034–1035.CrossRefGoogle Scholar
  4. [4]
    Bard, J.B.L., 1981. A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol, 93, 363–385.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Baynash, A. Greenstein, Hosoda, K., Giaid, A., Richardson, J.A., Emoto, N., Hammer, R.E., & Yanagisawa, M., 1994. Interaction of Endothelin-3 with Endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell, 79, 1277–1285.CrossRefGoogle Scholar
  6. [6]
    Blume-Jensen, P., Claesson-Welsh, L., Siegbahn, A., Zsebo, K.M, Westermark, B., & Heldin., C.I., 1991. Activation of the human c-kit product by the ligand induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J., 10, 4121–4128.Google Scholar
  7. [7]
    Castets, V., Dulos, E., Boissonade, J., & Kepper, P. De., 1990. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett., 64, 2953–2956.CrossRefGoogle Scholar
  8. [8]
    Crampin, E., Gaffney, E., & Maini, P.K., submitted.Google Scholar
  9. [9]
    Dakin, N., 1992. The Macmillan book of the marine aquarium. New York: Macmillan Publishing Company.Google Scholar
  10. [10]
    Dillon, R., & Othmer, H.G., 1999. A Mathematical Model for Outgrowth and Spatial Patterning of the Vertebrate Limb Bud. To appear in J. Theor. Biol.Google Scholar
  11. [11]
    Douarin, N.M. Le., 1982. The Neural Crest. Cambridge: CUP.Google Scholar
  12. [12]
    Epperlein, H.-H. & Löfberg, J., 1990. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum. Adv. Anat. Embrol. Cell. Biol., 118, 1–101.CrossRefGoogle Scholar
  13. [13]
    Erickson, C.A., 1993. From the crest to the periphery: Control of pigment cell migration and lineage segregation. Pigment Cell Res., 6, 336–347.CrossRefGoogle Scholar
  14. [14]
    Ermentrout, B., 1991. Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. Roy. Soc. Lond. A., 434, 413–417.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Fraser-Brunner, A., 1933. A revision of the Chaetodont fishes of the subfamily Pomacanthinae. Proc. Zool. Soc., 36, 543–596.Google Scholar
  16. [16]
    Fraser-Brunner, A., 1951. Pattern development in the chaetodont fish Pomacanthus annularis (Bloch), with a note on the status of Euxiphipops. Copeia., 1, 88–89.CrossRefGoogle Scholar
  17. [17]
    Fricke, H.W., 1980. Juvenile-adult colour patterns and coexistence in the territorial coral reef fish Pomacanthus imperator. Marine Ecology, 1, 133–141.CrossRefGoogle Scholar
  18. [18]
    Fujii, R., 1993a. Cytophysiology of fish chromatophores. Int. Rev. Cytol., 143, 191.CrossRefGoogle Scholar
  19. [19]
    Fujii, R., 1993b. The Physiology of Fishes. Marine Science Series. Boca Raton, Ann Arbor, London, Tokyo: CRC press. Chap. Coloration and Chromatophores, pp. 535–562.Google Scholar
  20. [20]
    Fujii, R., Kasuwaka, H., Miyaji, K., & Oshima, N., 1989. Mechanism of skin coloration and its changes in the blue-green damselfish. Zool. Sci., 6, 477–486.Google Scholar
  21. [21]
    Galli, S.J., Zsebo, K.M., & Geissler, E.N., 1993. The kit ligand, Stem cell factor. Advances Immunol., 55, 1–96.CrossRefGoogle Scholar
  22. [22]
    Geissler, E.N., Ryan, M.A., & Housman, D.E., 1988. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell, 55, 185–192.CrossRefGoogle Scholar
  23. [23]
    Gilbert, S.F., 1997. Developmental Biology. Fifth edn. Sinauer Associates.Google Scholar
  24. [24]
    Halaban, R., Ghosh, S., & Baird, S., 1987. bFGF is the putative natural growth factor for human melanovytes. In Vitro, 23, 47–52.Google Scholar
  25. [25]
    Horikawa, T., Norris, D.A., Yohn, J.J., Zekman, T., & Morelli, J.B. Travers J.G., 1995. Melanocyte mitogens induce both melanocyte chemokinesis and chemotaxis. J. Invest. Derm., 104, 256–259.CrossRefGoogle Scholar
  26. [26]
    Jensen, O., Mesekilded, E., Borckmans, P., & Dewel, G., 1996. Computersimulation of Turing structures in the Chlorite-Iodide-Malonic acid system. Phys. Scripta., 53, 243–251.CrossRefGoogle Scholar
  27. [27]
    Kasuwaka, H., Oshima, N., & Fujii, R., 1987. Mechanism of light reflection in blue damselfish motile iridophores. Zool. Sci., 4, 243–257.Google Scholar
  28. [28]
    Kelley, S., 1995. Pigmentation, squamation and the osteological development of larval and juvenile gray angemsh Pomacanthus arcuatus (Pomacanthidae: Pisces). Bull. Mar. Sci., 56(3), 826–848.MathSciNetGoogle Scholar
  29. [29]
    Kirschbaum, F., 1975. Untersuchungen uber dans Farbmuster der Zebrabarbe Brachydanio rerio (Cyprindae, Teleostei). Roux’s. Arch. Dev. Biol., 177, 129–152.Google Scholar
  30. [30]
    Kondo, S. & Asai, R., 1995. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature, 376, 675–768.CrossRefGoogle Scholar
  31. [31]
    Kulesa, P.M., Cruywagen, G.C., Lubkin, S.R., Maini, P.K., Sneyd, J., Ferguson, M.W.J., & Murray, J.D., 1996. On a model mechanism for the spatial patterning of teeth primordia in the alligator. J. Theor. Biol., 180, 287–296.CrossRefGoogle Scholar
  32. [32]
    Kunisada, T., Yoshida, H., Yamazaki, H., Miyamoto, A., Hemmi, H., Nishimura, E., Shultz, L.D., Nishikawa, S., & Hayashi, S., 1998. Transgene expression of steel factor in the basal layer of the epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development, 125, 2915–2923.Google Scholar
  33. [33]
    Lengyel, I. & Epstein, I.R., 1991. Modelling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science, 251, 650–652.CrossRefGoogle Scholar
  34. [34]
    Lyons, M.J. & Harrison, L.G., 1991. A class of reaction-diffusion mechanisms which preferentially select striped patterns. Chem. Phys. Lett., 183, 158–164.CrossRefGoogle Scholar
  35. [35]
    Lyons, M.J. & Harrison, L.G., 1992. Stripe selection: An intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn., 195, 201–215.CrossRefGoogle Scholar
  36. [36]
    Mcclure, M., 1998. Chapters: Growth, Shape Change, and the development of pigment patterns in fishes of the genus Danio (Teleostei: cyprindae). Ph.D. thesis, Cornell University.Google Scholar
  37. [37]
    Meinhardt, H., 1989. Models for positional signalling with application to the dorsoventral patterning of insects and segregation into different cell types. Development, supplement, 169–180.Google Scholar
  38. [38]
    Meinhardt, H., 1995. Dynamics of stripe formation. Nature, 376, 722–723.CrossRefGoogle Scholar
  39. [39]
    Meinhardt, H., 1998. The algorithmic beauty of sea shells. 2nd edn. Berlin, New-York: Springer.Google Scholar
  40. [40]
    Morelli, J.G., Yohn, J.J., Lyons, B., Murphy, R.C., & Norris, D.A., 1989. Leukotrines C4 and D4 as potent mitogens for cultured human neonatal melanocytes. J. Invest. Dermatol., 93, 719–722.CrossRefGoogle Scholar
  41. [41]
    Murray, J.D., 1979. A pattern formation mechanism and its application to mammalian coat markings. Lecture Notes in Biomathematics, Vol. 39. Berlin, Heidelberg, New York.: Springer.Google Scholar
  42. [42]
    Murray, J.D., 1981. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol, 88, 161–199.CrossRefGoogle Scholar
  43. [43]
    Murray, J.D., 1988. How the leopard got its spots. Sci. Am., 258, 80–87.CrossRefGoogle Scholar
  44. [44]
    Murray, J.D., 1993. Mathematical Biology. Second edition edn. Berlin, Heidelberg, New York: Springer-Verlag.MATHCrossRefGoogle Scholar
  45. [45]
    Nagorcka, B.N., 1992. From stripes to spots: Prepatterns which can be produced in the skin by a reaction-diffusion system. IMA. J. Math. Appl. Med. & Biol., 9, 249–267.MATHCrossRefGoogle Scholar
  46. [46]
    Naitoh, T., Morioka, A., & Omura, Y., 1985. Adaptation of a common freshwater goby, yoshinobori, Rhinogobius brunneus Temminck et Schlegel to various backgrounds including those containing different sizes of black and white checkerboard squares. Zool. Sci., 2, 59.Google Scholar
  47. [47]
    Newth, D.R., 1956. On the neural crest of the lamprey embryo. J. Embryol. Exp. Morphol., 4, 358–375.Google Scholar
  48. [48]
    Olsson, L. & Löfberg, J., 1992. Pigment pattern formation in larval ambystomatid salamanders: Ambystoma tigrinum tigrinum. J. MorphoL, 211, 73–85.CrossRefGoogle Scholar
  49. [49]
    Ouyang, Q. & Swinney, H.L., 1991. Transition from a uniform state to hexagonal and striped Turing patterns. Nature, 352, 610–612.CrossRefGoogle Scholar
  50. [50]
    Painter, K.J., 1997. Chemotaxis as a Mechanism for Morphogenesis. Ph.D. thesis, University of Oxford.Google Scholar
  51. [51]
    Painter, K.J., Othmer, H.G., & Maini, P.K., 1999. Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. USA, Vol. 96, 5549–5554.CrossRefGoogle Scholar
  52. [52]
    Parichy, D.M., 1996a. Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): The role of the lateral line sensory system and the evolution of pattern-forming mechanisms. Dev. Biol., 175, 265–282.CrossRefGoogle Scholar
  53. [53]
    Parichy, D.M., 1996b. When neural crest and placoses collide: Interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae). Dev. Biol., 175, 283–300.CrossRefGoogle Scholar
  54. [54]
    Parker, G.H., 1948. Animal Colour Changes and Their Neurohumours. Cambridge: CUP.Google Scholar
  55. [55]
    Rubin, J.S., Chan, A.M.L., Bottaro, D.P., Burgess, W.H., Taylor, W.G., Cech, A.C, Hirschfield, D.W., Wong, J., Miki, T., Finch, P.W., & Aaronson, S.T., 1991. A broad spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc. Natl Acad. Sci. USA, 88, 415–419.CrossRefGoogle Scholar
  56. [56]
    Schliwa, M., 1986. Biology of the Integument 2: Vertebrates. Berlin Heidelberg New York Tokyo: Springer-Verlag. Chap. Pigment Cells, pp. 65–77.Google Scholar
  57. [57]
    Shane, G.P. Du., 1934. The origin of pigment cells in Amphibia. Science, 80, 620–621.Google Scholar
  58. [58]
    Shewchuk, Jonathan Richard, 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. pp. 203–222 of: Lin, Ming C, & Manocha, Dinesh (eds.), Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, Vol. 1148. Springer-Verlag. Prom the First ACM Workshop on Applied Computational Geometry.Google Scholar
  59. [59]
    Sugimoto, M. 1993. Morphological colour changes in the medaka, Oryzias latipes, after prolonged background adaptation-I. Changes in the population and morphology of the melanophores. Comp. Biochem. Physiol., 104A, 513.Google Scholar
  60. [60]
    Tosney, K.W., 1992. A long distance cue from emerging dermis stimulates neural crest migration. Soc. Neurosci. Abs., 18, 1284.Google Scholar
  61. [61]
    Tucker, R.P. & Erickson, C.A., 1986. Pigment patternformation in Taricha torosa: The role of the extracellular matrix in controlling pigment cell migration and differentition. Dev. Biol., 118, 268–285.CrossRefGoogle Scholar
  62. [62]
    Turing, A.M., 1952. The chemical basis for morphogenesis. Phil. Trans. Roy. Soc. Lond. B., 237, 37–72.CrossRefGoogle Scholar
  63. [63]
    Varea, C, Aragon, J.L., & Barrio, R.A., 1997. Confined Turing patterns in growing systems. Phys. Rev. E., 56, 1250–1253.CrossRefGoogle Scholar
  64. [64]
    Wehrle-Haller, B. & Weston, J. A., 1995. Soluble and cell-bound forms of steel factor activity play distinct roles in melanovyte precurso dispersal and survival on the lateral neuarl crest migration pathway. Development, 121, 731–742.Google Scholar
  65. [65]
    Williams, D.E., Eisenman, J., Baird, A., Ruach, C, Ness, K. Van, March, C.J., Park, L.S., Martin., U., Mochizuki, D.Y., Boswell, H.S., Burgess, G.S., Cosman, D., & Lyman, S.D., 1990. Identification of a ligand for the c-kit proto-oncogene. Cell, 63, 167–174.CrossRefGoogle Scholar
  66. [66]
    Yada, Y., Higuchi, K., & Imokawa, G., 1991. Effects on endothelins on signal transduction and proliferation in human melanocytes. J. Biol. Chem., 266, 18352–18357.Google Scholar
  67. [67]
    Young, D.A., 1984. A local activator-inhibitor model of vertebrate skin patterns. Math. Biosci., 72, 51–58.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • K. J. Painter
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations