Skip to main content

Complete Description of the Voronoï Cell of the Lie Algebra A n Weight Lattice. On the Bounds for the Number of d-Faces of the n-Dimensional Voronoï Cells

  • Chapter
Book cover Algebraic Methods in Physics

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 337 Accesses

Abstract

Denoting these bounds by Nd(n), 0 ≤ dn we prove that Nd(n)/(n + 1)! is a polynomial Pd(n) of degree d with rational coefficients. We give the polynomials for d ≤ 5 explicitly. The proof uses the fact that these bounds Nd(n) are also the number of d-faces of the Voronoï cell of the weight lattice of the Lie algebra An (it is also the Cayley diagram of the symmetric group Sn+1, which is isomorphic to the Weyl group of An). Each d-face of this cell is a zonotope that can be defined by a symmetry group ~ G d (α), (d-dimensional reflection subgroup of the A n Weyl group. We show that for a given d and n large enough, all such subgroups of A n are represented, and we compute explicitly N(G d (α),n) the number of d-faces of type G d (α) in the Voronoï cell of L = A w n. The final result is obtained by summing over a. That also yields the simple expression \( Nd(n) = (n + 1 - d)!S_{n + 1}^{(n + 1 - d)} \) where the last symbol is the Stirling number of second kind.

This paper was received in August 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I.A., Handbook of mathematical functions, National Bureau of Standards (1964). Since, many corrected editions and reprintings have been published by Dover Publications.

    Google Scholar 

  2. E.P. Baranovskii and S.S. Ryskov, Primitive five-dimensional parallelohedra, Soviet Math. Dokl. 14 (1973), 1391–1395.

    Google Scholar 

  3. J.H. Conway and N.J.A. Sloane, The cell structures of certain lattices, Miscellaneous Mathematics (P. Hilton, F. Hirzebruch, R. Remmert, eds.), Springer, Berlin, 1991, pp. 71–109.

    Chapter  Google Scholar 

  4. J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren Math. Wiss., Vol. 290, Springer Verlag, New York, 1988.

    Google Scholar 

  5. H.S.M. Coxeter, Regular polytopes, Mac Millan, 1947; 2nd ed., 1963, Dover reprint, 1973.

    Google Scholar 

  6. H.S.M. Coxeter and W.O.J. Coxeter, Generators and relations for discrete groups, Springer-Verlag, New York, 1957; 4th ed., 1980.

    MATH  Google Scholar 

  7. B.N. Delone, R.V. Galiulin, and M.I. Shtogrin, Bravais theory and its generalization to n-dimensional lattices, Appendix, Auguste Bravais: Collected scientific works, Nauka, Leningrad, 1974, pp. 309–415 (in Russian).

    Google Scholar 

  8. P. Engel, Geometric crystallography: An axiomatic introduction to crystallography, D. Reidel Publ. Co., Dordrecht, 1986.

    MATH  Google Scholar 

  9. P. Engel, On the symmetry classification of the four-dimensional parallelohedra, Z. Krist. 200 (1992), 199–213.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Engel, Investigations on lattices and parallelohedra in Rd, Vorono’i Impact on Modern Science, Proc. Inst. Math. Acad. Sci. Ukraine, Vol. 21, 1998, pp. 22–60.

    Google Scholar 

  11. E.S. Fedorov, An introduction to the theory of figures, Verhandlungen der russisch-kaiserlichen mineralogischen Gesellschaft zu St Petersbourg 21 (1885), 1–279 (in Russian).

    Google Scholar 

  12. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete mathematics, Addison-Wesley Publishing Co., Reading, MA, 1989.

    MATH  Google Scholar 

  13. B. Grünbaum, Convex polytopes, Pure Appl. Math., Vol. 16, John Wiley&Sons, Inc., New York, 1967.

    Google Scholar 

  14. C. Jordan, Calculus of finite differences; reprinted by Chelsea, New York, 1960.

    Google Scholar 

  15. A. Kerber, Algebraic combinatorics via finite group actions, Preprint, Bayreuth University, 1996.

    Google Scholar 

  16. L. Michel and M. Senechal, Geometry of Euclidean lattices (to appear).

    Google Scholar 

  17. H. Minkowski, Zur Theorie der positiven quadratischen Formen, J. Reine Angew. Math. 106 (1890), 5–26; Collected works, Vol. 1, pp. 212-218.

    MATH  Google Scholar 

  18. H. Minkowski, Allgemeine, Lehrsätze über konvexe Polyeder, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. (1897); Ges. Abhand. 2, 103–121.

    Google Scholar 

  19. H. Minkowski, Diophantische Approximationen, Teubner, Leipzig (1907); reprinted, Chelsea Publishing Co., New York, 1957.

    Google Scholar 

  20. R.V. Moody and J. Patera, Voronoï domains and dual cells in the generalized kaleidoscope with applications to root and weight lattices, Canad. J. Math. 47 (1995), 573–605.

    Article  MathSciNet  MATH  Google Scholar 

  21. S.S. Ryskov, The structure of a n-dimensional parallelohedron of the first kind, Soviet Math. Dokl. 3 (1962), 1451–1454.

    Google Scholar 

  22. E. Selling, Ueber die binären und temären quadratischen Formen, J. Reine Angew. Math. 77 (1874), 143–229.

    Google Scholar 

  23. M. Senechal and R.V. Galiulin, An introduction to the theory of figures: The geometry of E.S. Fedorov, Structural Topology, No. 10, (1984), 5–22.

    MathSciNet  MATH  Google Scholar 

  24. G. Voronoï, Recherches sur les paralléloèdres primitifs. I. Propriétés générales des paralléloèdres, J. Reine Angew. Math. 133 (1908), 198–287.

    Google Scholar 

  25. G. Voronoï, Recherches sur les paralléloèdres primitifs. II Domaines de formes quadratiques correspondant aux différents types de paralléloèdres primitifs, J. Reine Angew. Math. 136 (1909), 67–181.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michel, L. (2001). Complete Description of the Voronoï Cell of the Lie Algebra A n Weight Lattice. On the Bounds for the Number of d-Faces of the n-Dimensional Voronoï Cells. In: Saint-Aubin, Y., Vinet, L. (eds) Algebraic Methods in Physics. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0119-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0119-6_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6528-3

  • Online ISBN: 978-1-4613-0119-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics