Skip to main content

Homoclinic Orbits to Invariant Tori in Hamiltonian Systems

  • Conference paper

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 122))

Abstract

We consider a perturbation of an integrable Hamiltonian system which possesses invariant tori with coincident whiskers (like some rotators and a pendulum). Our goal is to measure the splitting distance between the perturbed whiskers, putting emphasis on the detection of their intersections, which give rise to homoclinic orbits to the perturbed tori. A geometric method is presented which takes into account the Lagrangian properties of the whiskers. In this way, the splitting distance is the gradient of a splitting potential. In the regular case (also known as a priori-unstable: The Lyapunov exponents of the whiskered tori remain fixed), the splitting potential is well-approximated by a Melnikov potential. This method is designed as a first step in the study of the singular case (also known as a priori-stable: The Lyapunov exponents of the whiskered tori approach to zero when the perturbation tends to zero).

This work was supported in part by the EC grant ERBCHRXCT940460.

Also supported in part by the Spanish grant DGICYT PB94-0215 and the Catalan grant CIRIT 1996SGR-000105.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Arnold, Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys, 18 (1963), pp. 9–36.

    Article  Google Scholar 

  2. —, Instability of dynamical systems with several degrees of freedom, Soviet Math. Dokl., 5 (1964), pp. 581–585.

    Google Scholar 

  3. V. Arnold, V. Kozlov, and A. Neishtadt, Mathematical aspects of classical and celestial mechanics, in Dynamical systems III, V. Arnold, ed., Vol. 3 of Encyclopaedia Math. Sci., Springer-Verlag, Berlin-Heidelberg, 1988.

    Google Scholar 

  4. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method, Il Nuovo Cimento B, 79 (1984), pp. 201–223.

    Article  MathSciNet  Google Scholar 

  5. P. Bernard, Perturbation d’un hamiltonien partiellement hyperbolique, C.R. Acad. Sci. Paris Sér. I Math., 323 (1996), pp. 189–194.

    MathSciNet  MATH  Google Scholar 

  6. U. Bessi, An approach to Arnold’s diffusion through the calculus of variations, Nonlinear Anal., 26 (1996), pp. 1115–1135.

    Article  MathSciNet  MATH  Google Scholar 

  7. —, Arnold’s example with three rotators, Nonlinearity, 10 (1997), pp. 763–781.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bolotin, Homoclinic orbits in invariant tori of Hamiltonian systems, in Dynamical systems in classical mechanics, V. Kozlov, ed., Vol. 168 of Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 1995, pp. 21–90. Adv. Math. Sci., 25.

    Google Scholar 

  9. J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d’après Kolmogorov, Arnold, Moser, Rüssmann, Zehnder, Herman, Pöschel,...), Astérisque, 133, 134 (1986), pp. 113–157.

    MathSciNet  Google Scholar 

  10. H. Broer and G. Huitema, A proof of the isoenergetic KAM-theorem from the ‘ordinary’ one, J. Differential Equations, 90 (1991), pp. 52–60.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Broer, G. Huitema, and M. Sevryuk, Quasiperiodic motions in families of dynamical systems: Order amidst chaos, Vol. 1645 of Lecture Notes in Math., Springer-Verlag, New York, 1996.

    Google Scholar 

  12. L. Chierchia, Non-degenerate ‘Arnold diffusion’. mp_arc@math.utexas.edu, Preprint 96–137, 1996.

    Google Scholar 

  13. L. Chierchia and G. Gallavotti, Drift and diffusion in phase space, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), pp. 1–144.

    MathSciNet  MATH  Google Scholar 

  14. B. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep., 52 (1979), pp. 263–379.

    Article  MathSciNet  Google Scholar 

  15. S.-N. Chow and J. Hale, Methods of bifurcation theory, Vol. 251 of Grundlehren Math. Wiss., Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  16. J. Cresson, A λ-lemma for partially hyperbolic tori and the obstruction property. Preprint, 1998.

    Google Scholar 

  17. A. Delshams, V. Gelfreich, A. Jorba, and T. Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math. Phys., 189 (1997), pp. 35–71.

    Article  MathSciNet  MATH  Google Scholar 

  18. —, Splitting of separatrices for (fast) quasiperiodic forcing, in Simó [54].

    Google Scholar 

  19. A. Delshams and P. Gutiérrez, Effective stability and KAM theory, J. Differential Equations, 128 (1996), pp. 415–490.

    Article  MathSciNet  MATH  Google Scholar 

  20. —, Splitting potential and Poincaré-Melnikov theory for whiskered tori in Hamiltonian systems. Preprint, 1998.

    Google Scholar 

  21. A. Delshams and R. Ramírez-Ros, Melnikov potential for exact symplectic maps, Comm. Math. Phys., 190 (1997), pp. 213–245.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Delshams and T. Seara, Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom, Math. Phys. Electron. J., 3 (1997), pp. 1–40.

    MathSciNet  MATH  Google Scholar 

  23. R. Douady, Applications du théorème des tores invariants, PhD thesis, Université Paris VII, 1982.

    Google Scholar 

  24. H. Dumas, Ergodization rates for linear flows on the torus, J. Dynamics Differential Equations, 3 (1991), pp. 593–610.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Eliasson, Biasymptotic solutions of perturbed integrable Hamiltonian systems, Bol. Soc. Bras. Mat, 25 (1994), pp. 57–76.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Gallavotti, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems. A review, Rev. Math. Phys., 6 (1994), pp. 343–411.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Gallavotti, G. Gentile, and V. Mastropietro, Pendulum: Separatrix splitting. Preprint 97-472, mp_arc@math.utexas.edu, 1997.

    Google Scholar 

  28. S. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 15 (1974), pp. 1–69.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Holmes and J. Marsden, Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems, J. Math. Phys., 23 (1982), pp. 669–675.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Kolmogorov, The general theory of dynamical systems and classical mechanics, in Foundations of mechanics, Benjamin/Cummings, Reading, Mass., 2nd ed., 1978, pp. 741–757 (appendix).

    Google Scholar 

  31. V. Lazutkin, Splitting of separatrices for the Chirikov’s standard map (in Russian). Preprint VINITI 6372-84, 1984.

    Google Scholar 

  32. R. Llave and C. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems. Preprint, 1989.

    Google Scholar 

  33. P. Lochak, Effective speed of Arnold’s diffusion and small denominators, Phys. Lett. A, 143 (1990), pp. 39–42.

    Article  MathSciNet  Google Scholar 

  34. —, Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys, 47 (1992), pp. 57–133.

    Article  MathSciNet  Google Scholar 

  35. —, Hamiltonian perturbation theory: periodic orbits, resonances and intermittency, Nonlinearity, 6 (1993), pp. 885–904.

    Article  MathSciNet  MATH  Google Scholar 

  36. —, Arnold diffusion; a compendium of remarks and questions, in Simó [54].

    Google Scholar 

  37. P. Lochak and A. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), pp. 495–499.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Marco, Transition le long des chaînes de tores invariants pour les systèmes hamiltoniens analytiques, Ann. Inst. H. Poincaré Phys. Théor., 64 (1996), pp. 205–252.

    MathSciNet  MATH  Google Scholar 

  39. R. Moeckel, Transition tori in the five-body problem, J. Differential Equations, 129 (1996), pp. 290–314.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys., 78 (1995), pp. 1607–1617.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math., 9 (1956), pp. 673–692.

    Article  MathSciNet  MATH  Google Scholar 

  42. —, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. K1. II, 2 (1962), pp. 1–20.

    Google Scholar 

  43. A. Neishtadt, The separation of motions in systems with rapidly rotating phase, J. Appl. Math. Mech., 48 (1984), pp. 133–139.

    Article  MathSciNet  Google Scholar 

  44. N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Math. Surveys, 32 (1977), pp. 1–65.

    Article  MATH  Google Scholar 

  45. L. Niederman, Dynamic around a chain of simple resonant tori in nearly integrable Hamiltonian systems. To appear in J. Differential Equations. Preprint 97-142, mp_arc@math.utexas.edu, 1997.

    Google Scholar 

  46. A. Perry and S. Wiggins, KAM tori are very sticky: Rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow, Phys. D, 71 (1994), pp. 102–121.

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Math., 13 (1890), pp. 1–271.

    MATH  Google Scholar 

  48. J. PÖSCHEL, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), pp. 653–696.

    Article  MathSciNet  MATH  Google Scholar 

  49. —, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., 213 (1993), pp. 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  50. C. Robinson, Horseshoes for autonomous Hamiltonian systems using the Melnikov integral, Ergodic Theory Dynam. Systems, 8 (1988), pp. 395–409.

    Article  Google Scholar 

  51. M. Rudnev and S. Wiggins, KAM theory near multiplicity one resonant surfaces in perturbations of a-priori stable Hamiltonian systems, J. Nonlinear Sci., 7 (1997), pp. 177–209.

    Article  MathSciNet  MATH  Google Scholar 

  52. —, Existence of exponentially small separatrix splitting and homoclinic connections between whiskered tori in weakly hyperbolic near-integrable Hamiltonian systems, Phys. D, 114 (1998), pp. 3–80.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Simó, Averaging under fast quasiperiodic forcing, in Hamiltonian Mechanics: Integrability and Chaotic Behavior, J. Seimenis, ed., Vol. 331 of NATO ASI Ser. B: Phys., held in Toruń, Poland, 28 June–2 July 1993. Plenum, New York, 1994, pp. 13–34.

    Google Scholar 

  54. —, ed., Hamiltonian Systems with Three or More Degrees of Freedom, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Held in S’Agaró, Spain, 19–30 June 1995. Kluwer Acad. Publ., Dordrecht, Holland, to appear in 1999.

    Google Scholar 

  55. D. Treschev, The mechanism of destruction of resonance tori of Hamiltonian systems, Math. USSR Sb., 68 (1991), pp. 181–203.

    Article  MathSciNet  Google Scholar 

  56. —, Hyperbolic tori and asymptotic surfaces in Hamiltonian systems, Russian J. Math. Phys., 2 (1994), pp. 93–110.

    MathSciNet  Google Scholar 

  57. S. Wiggins, Global bifurcations and chaos: Analytical methods, Vol. 73 of Appl. Math. Sci., Springer, New York, 1990.

    Google Scholar 

  58. Z. Xia, Arnold diffusion in the elliptic restricted three-body problem, J. Dynamics Differential Equations, 5 (1993), pp. 219–240.

    Article  MATH  Google Scholar 

  59. —, Arnold diffusion and oscillatory solutions in the planar three-body problem, J. Differential Equations, 110 (1994), pp. 289–321.

    Article  MathSciNet  MATH  Google Scholar 

  60. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems/II, Comm. Pure Appl. Math., 29 (1976), pp. 49–111.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Delshams, A., Gutiérrez, P. (2001). Homoclinic Orbits to Invariant Tori in Hamiltonian Systems. In: Jones, C.K.R.T., Khibnik, A.I. (eds) Multiple-Time-Scale Dynamical Systems. The IMA Volumes in Mathematics and its Applications, vol 122. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0117-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0117-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6529-0

  • Online ISBN: 978-1-4613-0117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics