Skip to main content

Automatic Differentiation and the Adjoint State Method

  • Chapter
  • First Online:
Automatic Differentiation of Algorithms

Abstract

The C++ class fdtd uses automatic differentiation techniques to implement an abstract time stepping scheme in an object-oriented fashion, making it possible to use the resulting simulator to solve inverse or control problems. The class takes a complete specification of a single step of the scheme, and assembles from it a complete simulator, along with the linearized and adjoint simulations. The result is a (nonlinear) operator in the sense of the Hilbert Class Library, a C++ package for optimization. Performance is equivalent to that of optimized Fortran implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gockenbach, M.S., Reynolds, D.R., Symes, W.W. (2002). Automatic Differentiation and the Adjoint State Method. In: Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U. (eds) Automatic Differentiation of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0075-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0075-5_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6543-6

  • Online ISBN: 978-1-4613-0075-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics