Skip to main content

Abstract

Mathematical models for Tuberculosis with linear and logistic growth rates are considered. The global dynamic structure for the logistic recruitment model is analyzed with the help of a strong version of the Poincaré-Bendixson Theorem. The nature of the global dynamics of the same model with a linear recruitment rate is established with the use of explicit threshold quantities controlling the absolute and relative spread of the disease and the likelihood of extinction or persistence of the total population. The classification of planar quadratic systems helps rule out the existence of closed orbits (limit cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.M., May, R.M., and Mclean, A.R. (1988). Possible demographic impact of AIDS in developing countries, Nature, 332:228–234.

    Article  Google Scholar 

  2. Aparicio, J.P., Capurro, A.F., and Castillo-Chavez, C. (2000). Transmission and dynamics of tuberculosis on generalized households, J. Theor. Biol., 206: 327–341.

    Article  Google Scholar 

  3. Aparicio, J.P., Capurro, A.F., and Castillo-Chavez, C. (2001a). Long-term dynamics and re-emergence of tuberculosis. (This volume.)

    Google Scholar 

  4. Aparicio, J.P., Capurro, A.F., and Castillo-Chavez, C. (2001b). Frequency dependent risk of infection and the spread of infectious diseases. (This volume.)

    Google Scholar 

  5. Blower, S.M., McLean, A.R., Porco, T., Sanchez, M., Small, P.M., Hopewell, P., and Moss, A. (1995). The intrinsic transmission dynamics of tuberculosis epidemics. Nat. Med., 1:815–821.

    Article  Google Scholar 

  6. Blower, S.M., Small, P.M., and Hopewell, P. (1996). Control Strategies for tuberculosis Epidemics: New models for old problems, Science, 272:497–500.

    Article  Google Scholar 

  7. Blower, S.M. and Gerberding, J.L. (1998). Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: a theoretical framework, J. Mol. Med., 76:624–636.

    Article  Google Scholar 

  8. Brauer, F. (1989). Epidemic models in populations of varying size. In Mathematical Approaches to Problems in Resource Management and Epidemiology, Castillo-Chavez, C, Levin, S.A., and Shoemaker, C.A. (Eds.) Lecture Notes in Biomathematics, 81, Springer-Verlag, Berlin-Heidelberg, New York, London, Paris, Tokyo, Hong Kong. pp. 109–123.

    Chapter  Google Scholar 

  9. Brauer, F. and Castillo-Chavez, C. (2001). Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, Berlin, Heidelberg.

    MATH  Google Scholar 

  10. Busenberg, S. and Hadeler, K.P. (1990). Demography and epidemics, Math. Biosci., 101:41–62.

    Article  MathSciNet  Google Scholar 

  11. Busenberg, S. and van den Driessche, P. (1990). Nonexistence of Periodic Solutions for a Class of Epidemiological Models. In Differential Equations Models in Biology, Epidemiology and Ecology, Busenberg S. and Martelli M.(eds), Lecture Notes in Biology, 92, Springer-Verlag, Berlin-Heidelberg-New York, pp. 71–79.

    Google Scholar 

  12. Castillo-Chavez, C. and Feng, Z. (1997). To treat or not to treat: the case of tuberculosis,J. Math. Biol., 35: 629–656.

    Article  MathSciNet  MATH  Google Scholar 

  13. Castillo-Chavez, C. and Feng, Z. (1998). Global stability of an age-structure model for TB and its application to optimal vaccination strategies, Math. Biosci., 151:135–154

    Article  MATH  Google Scholar 

  14. Cohen, J.E. (1995). How Many People Can the Earth Support? W.W. Norton and Company, New York, London.

    Google Scholar 

  15. Feng, Z., Castillo-Chavez, C., and Capurro, A.F. (2000). A model for tuberculosis with exogenous reinfection, Theoretical Population Biology, 57:235–247.

    Article  MATH  Google Scholar 

  16. Feng, Z., Castillo-Chavez, C., and Huang, W. (2001). On the role of variable latent period in mathematical models for tuberculosis, Journal of Dynamics and Differential Equations (in process), Vol. 13.

    Google Scholar 

  17. Hadeler, K.P. and Ngoma, K. (1990). Homogeneous models for sexually trans- mitted diseases, Rocky Mountain, J. Math., 20:967–986.

    MathSciNet  MATH  Google Scholar 

  18. Hadeler, K.P. (1992). Periodic solutions of homogeneous equations, J. Differential Equations, 95:183–202.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hirsch, W.M., Hanisch, H., and Gabriel, J.P. (1985). Differential equation modes for some parasitic infections; methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38:733–753.

    Article  MathSciNet  MATH  Google Scholar 

  20. Iannelli, M., Miller, F., and Pugliese, A. (1992). Analytical and numerical results for the age-structured S-I-S epidemic model with mixed inter-intracohort transmission. SI AM J. Appl. Math., 23:662–688.

    MATH  Google Scholar 

  21. Levin, S.A. and Pimentel, D. (1981). Selection of intermediate rates of increase in parasite-host systems. Am. Nat., 117:308–315.

    Article  MathSciNet  Google Scholar 

  22. Lin, X., Hethcote, W., and van den Driessche P. (1993). An Epidemiological Models for HIV/AIDS with Proportional Recruitment, Math. Biosci., 118:181–195.

    Article  MathSciNet  MATH  Google Scholar 

  23. May, R.M. and Anderson, R.M. (1985). Endemic infections in growing populations, Math. Biosci., 77:141–156.

    Article  MathSciNet  MATH  Google Scholar 

  24. May, R.M., Anderson, R.M., and Mclean, A.R. (1989). Possible demographic consequence of HIV/AIDS epidemics: II, assuming HIV infection does not necessarily lead to AIDS, In Mathematical Approaches to Problems in Resource Management and Epidemiology, Castillo-Chavez, C., Levin, S.A., and Shoemaker, C.A. (Eds.) Lecture Notes in Biomathematics, 81, Springer-Verlag, Berlin-Heidelberg, New York, London, Paris, Tokyo, Hong Kong. 220–248.

    Chapter  Google Scholar 

  25. Muldowney, J.S. (1990). Compound matrix and ordinary differential equations. Rocky Mountain J. Math., 20:857–872.

    Article  MathSciNet  MATH  Google Scholar 

  26. Smith, H.L. (1995). Monotone Dynamical System: an introduction to theory of competitive and cooperative systems. AMS Mathematical survey and monographs, 41.

    Google Scholar 

  27. Styblo, K. (1991). Selected Papers: Epidemiology of tuberculosis. Royal Netherlands Tuberculosis Association, 24. The Hague, The Netherlands.

    Google Scholar 

  28. Thieme, R.H. (1992). Convergence results and a Poincaré-Bendixson tricho-tomy for asymptotically autonomous differential equation, J. Math. Biol, 30: 755–763.

    Article  MathSciNet  MATH  Google Scholar 

  29. Thieme, R.H. (1992). Epidemic and demographic interaction in the spread of potentially fatal disease in growing populations, Math. Biosci., 111:99–130.

    Article  MathSciNet  MATH  Google Scholar 

  30. Thieme, H.R. and Castillo-Chavez, C. (1993). How may infection-agedependent infectivity affect the dynamics of HIV/AIDs? SIAM J. Appl. Math., 53(5):1447–1479.

    Article  MathSciNet  Google Scholar 

  31. Thieme, R.H. (1993). Persistence under relaxed point-dissipativity (with applications to an endemic models). SIAM J. Math. Anal., 24:407–435.

    Article  MathSciNet  MATH  Google Scholar 

  32. Thieme, R.H. (1994). Asymptotically autonomous differential equations in the plane, Rocky Mt. J. Math., 24:351–380.

    MathSciNet  MATH  Google Scholar 

  33. Thieme, R.H. and Castillo-Chavez, C. (1995). Asymptotically Autonomous Epidemic Models, In Mathematical Populations Dynamics: Analysis of Heterogeneity (O. Arino, D.E. Axelrod, and M. Kimmel, eds.), pp. 33–50.

    Google Scholar 

  34. Vynnycky, E. and Fine, P.E.M. (1997). The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol. Infect, 119:183–201.

    Article  Google Scholar 

  35. Ye, Yan-qian (eds) (1986). Theory of limit cycles, Translations of mathematical monographs By American Mathematical Society, 66:245–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Song, B., Castillo-Chavez, C., Aparicio, J.P. (2002). Global Dynamics of Tuberculosis Models with Density Dependent Demography. In: Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., Yakubu, AA. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. The IMA Volumes in Mathematics and its Applications, vol 126. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0065-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0065-6_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6550-4

  • Online ISBN: 978-1-4613-0065-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics