Virulence Evolution in Macro-Parasites

  • Andrea Pugliese
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 126)


Evolutionary issues are very relevant in the comprehension of emerging or re-emerging disease (Ewald 1994): it seems likely that benign diseases may become, by evolutionary changes in virulence or in the capability of evading immune response, a new threat for the health of humans and animals, and thus be considered ‘emerging diseases’ (Dieckmann et al. 2000).


Sexual Reproduction Parasite Species Host Population Evolutionary Stable Strategy Virulence Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.M. & May, R.M. (1978). Regulation and stability of host-parasite populations interactions 1–2, J. Anim. Ecol. 47: 219–247, 249–267.CrossRefGoogle Scholar
  2. Anderson, R.M. & May, R.M. (1982). Coevolution of hosts and parasites, Parasitology 85: 411–426.CrossRefGoogle Scholar
  3. Anderson, R.M. & May, R.M. (1991). Infectious diseases of humans: dynamics and control, Oxford Univ. Press, Oxford.Google Scholar
  4. Andreasen, V. & Christiansen, F.B. (1993). Disease-induced natural selection in a diploid host, Theor. Pop. Biol. 44: 261–298.zbMATHCrossRefGoogle Scholar
  5. Armstrong, R.A. & McGehee, R. (1980). Competitive exclusion, Amer. Nat. 115: 151–170.MathSciNetCrossRefGoogle Scholar
  6. Bailey, N.T.J. (1964). The elements of stochastic processes, Wiley, New York.zbMATHGoogle Scholar
  7. Bremermann, H.J. & Thieme, H.R. (1989). A competitive exclusion principle for pathogen virulence, J. Math. Biol. 27: 179–190.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Castillo-Chavez, C. & Velasco-Hernandez, J.X. (1998). On the relationship between evolution of virulence and host demography, J. Theor. Biol. 192: p. 437.CrossRefGoogle Scholar
  9. Charlesworth, B. (1981). Evolution in age-structured populations, Cambridge Univ. Press, Cambridge.Google Scholar
  10. Dieckmann, U. (1997). Can adaptive dynamics invade?, Trends Ecol. Evol. 12: 128–131.CrossRefGoogle Scholar
  11. Dieckmann, U., Metz, J., Sabelis, M. & Sigmund, K. (eds) (2000). The adaptive dynamics of infectious diseases: in pursuit of virulence management, Cambridge Univ. Press.Google Scholar
  12. Diekmann, O. & Heesterbeek, J.A.P. (2000). Mathematical Epidemiology of Infectious Diseases, Wiley, New York.Google Scholar
  13. Diekmann, O., Heesterbeek, J.A.P. & Metz, J.A.J. (1990). On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28: 365–382.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Diekmann, O. & Kretzschmar, M. (1991). Patterns in the effects of infectious diseases on population growth, J. Math. Biol. 29: 539–570.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Dobson, A.P. (1985). The population dynamics of competition between parasites, Parasitology 91: 317–347.CrossRefGoogle Scholar
  16. Dobson, A.P. & Hudson, P.J. (1992). Regulation and stability of a free-living host-parasite system. II. population models, J. Anim. Ecol. 61: 487–498.CrossRefGoogle Scholar
  17. Dobson, A.P. & Merenlender, A. (1991). Coevolution of macroparasites and their hosts, in C. Toft, A. Aeschlimann & L. Bolis (eds), Parasite-Host Association. Coexistence or Conflict?, Oxford Scientific Publications, pp. 83–101.Google Scholar
  18. Ebert, D. & Hamilton, W.D. (1996). Sex against virulence: the coevolution of parasitic diseases, Trends Ecol. Evol. 11: 79–82.CrossRefGoogle Scholar
  19. Eshel, I. (1977). The founder effect - an ecogenetical approach, Theor. Pop. Biol. 3: 410–24.MathSciNetCrossRefGoogle Scholar
  20. Eshel, I. (1996). On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution, J. Math. Biol. 34: 485–510.zbMATHCrossRefGoogle Scholar
  21. Ewald, P.W. (1994). The evolution of Infectious Disease, Oxford University Press.Google Scholar
  22. Frank, S.A. (1996). Models of parasite virulence, Quarterly Review of Biology 71: 37–78.CrossRefGoogle Scholar
  23. Gatto, M. & De Leo, G. (1998). Interspecific competition among macroparasites in a density-dependent host population, J. Math. Biol. 37: 467–490.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Geritz, S.A.H., Kisdi, E., MeszÉna, G. & Metz, J.A.J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol. 12: 35–.CrossRefGoogle Scholar
  25. Hadeler, K.P. & Dietz, K. (1983). Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations, Comp. Math. Appl. 9: 415–430.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Hamilton, W.D. (1980). Sex versus non-sex versus parasite, Oikos 35: 282–290.CrossRefGoogle Scholar
  27. Holmes, J.C. (1973). Site segregation by parasitic helminths: interspecific interactions, site segregation, and their importance to the development of helminth communities, Can. J. Zool. 51: 333–347.CrossRefGoogle Scholar
  28. Hutson, V. & Schmitt, K. (1992). Permanence and the dynamics of biological systems, Math. Biosci. 111: 1–71.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Isham, V. (1995). Stochastic models of host-macroparasite interaction, Annals of Applied Probability 5: 720–740.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Kostizin, V.A. (1934). Symbiose, parasitisme et èvolution (ètude mathèmatique), Hermann, Paris. Translated in F. Scudo and J. Ziegler (eds.) (1978), The Golden Age of Theoretical Ecology, pp. 369–408, Lecture Notes in Biomathematics 22, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  31. Kretzschmar M. (1993). Comparison of an infinite dimensional model for parasitic diseases with a related 2-dimensional system, J. Math. Anal. Appl. 176: 235–260.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Levin S.A. & Pimentel, D. (1981). Selection for intermediate rates of increase in parasite-host systems, Amer. Nat. 117: 308–315.MathSciNetCrossRefGoogle Scholar
  33. Mena-Lorca, J., Velasco-Hernandez, J. & Castillo-Chavez, C. (1999). Density-dependent dynamics and superinfection in an epidemic model, IMA J. of Math. Applied to Medicine and Biology 16: 307–317.zbMATHCrossRefGoogle Scholar
  34. Metz, J., Geritz, S., Meszena, G., Jacobs, F. & van Heerwaarden, J. (1996). Adaptive dynamics: A geometrical study of the consequences of nearly faithful reproduction, Stochastic and Spatial Structures of Dynamical Systems, van Strien SJ, Verduyn Lunel SM (eds.), Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen), North Holland, Amsterdam, pp. 183–231.Google Scholar
  35. Mosquera, J. & Adler, F. (1998). Evolution of virulence: a unified framework for coinfection and superinfection, J. theor. Biol. 195: 293–313.CrossRefGoogle Scholar
  36. Nowak, M.A. & May, R.M. (1994). Superinfection and the evolution of parasite virulence, Proc. R. Soc. London B 255: 81–89.CrossRefGoogle Scholar
  37. Poulin, R. (1997). Population abundance and sex ratio in dioecious helminth parasites, Oecologia 111: 375–380.CrossRefGoogle Scholar
  38. Pugliese, A. (2000a). Coexistence of macroparasites without direct interactions, Theor. Pop. Biol. 57: 145–165.zbMATHCrossRefGoogle Scholar
  39. Pugliese, A. (2000b). Evolutionary dynamics of virulence, in U. Dieckmann & J. Metz (eds), Elements of adaptive dynamics, Cambridge Univ. Press, in press.Google Scholar
  40. Pugliese, A., Rosà, R. & Damaggio, M.L. (1998). Analysis of a model for macroparasitic infection with variable aggregation and clumped infections, J. Math. Biol. 36: 419–447.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Roberts, M.G. & Dobson, A.P. (1995). The population dynamics of communities of parasitic helminths, Math. Biosci. 126: 191–214.zbMATHCrossRefGoogle Scholar
  42. Sasaki, A. & Iwasa, Y. (1991). Optimal growth schedule of pathogens within a host: switching between lytic and latent cycles, Theor. Pop. Biol. 39: 201–239.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Shaw, D.J. & Dobson, A.P. (1995). Patterns of macroparsite abundance and aggregation in wildlife populations: a quantitative review, Parasitology 111 Suppl.: 111–133.CrossRefGoogle Scholar
  44. van Baalen, M. & Sabelis, M.W. (1995). The dynamics of multiple infection and the evolution of virulence, Amer. Nat. 146: 881–910.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Andrea Pugliese
    • 1
  1. 1.Dipartimento di MatematicaUniversitá di TrentoPovo (TN)Italy

Personalised recommendations