Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 126))

Abstract

The study of infectious diseases represents one of the oldest and richest areas in mathematical biology. Infectious diseases have fascinated mathematicians for a century, and with good reason. Most seductive, of course, is the possibility of using mathematics to make a positive contribution to the world. In the study of infectious diseases, the essential elements are quickly grasped, and well-captured within mathematical representations. As new epidemics, from AIDS to bovine spongiform encephalopathy (mad-cow) to foot-and-mouth, make their appearances on the world stage, mathematical models are essential to inform decision-making. Governments and health agencies turn to the leading modelers for advice, and news services seek them out for the clarity they can bring. It is a rare opportunity for relevance for those who spend so much of their time in otherwise abstract and esoteric exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.M.and May, R.M. 1982. Coevolution of hosts and parasites. Parasitology, 85:411–426.

    Article  Google Scholar 

  • Anderson, R.M.and May, R.M. 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Andreasen, V., Lin, J., and Levin, S.A. 1997. The dynamics of cocirculating influenza strains conferring partial cross-immunity. Journal Mathematical Biology, 35:825–842.

    Article  MathSciNet  MATH  Google Scholar 

  • Bolker, B.M. and Grenfell, B.T. 1993. Chaos and biological complexity in measles dynamics. Proc. R. Soc. Lond. B, 251:75–81.

    Article  Google Scholar 

  • Daily, G.C. and Ehrlich, P.R. 1996. Global change and human susceptibility to disease. Ann. Rev. Energy Environ., 21:125–144.

    Article  Google Scholar 

  • Dushoff, J. 1999. Host heterogenity and disease endemicity: A moment-based approach. Theoretical Population Biology, 56.

    Google Scholar 

  • Dushoff, J. and Levin, S.A. 1995. The effects of population heterogeneity on disease spread. Mathematical Biosciences, 128:25–40.

    Article  MATH  Google Scholar 

  • Earn, D.J.D., Levin, S.A., and Rohani, P. 2000. Coherence and conservation. Science, 290:1360–64.

    Article  Google Scholar 

  • Fitch, W.M., Bush, R.M., Bender, C.A., and Cox, N.J. 1997. Long term trends in the evolution of H(3) HA1 human influenza type A. Proceedings of the National Academy of Sciences, USA, 94:7712–7718.

    Article  Google Scholar 

  • Fitch, W.M., Leiter, J.M.E., Li, X., and Palese, P. 1991. Positive Darwinian evolution in human influenza A viruses. Proceedings of the National Academy of Sciences, USA, 88:4270–4274.

    Article  Google Scholar 

  • Futuyma, D. and Slatkin, M., eds. 1983. Coevolution. Sunderland, MA: Sinauer.

    Google Scholar 

  • Gupta, S., Swinton, J., and Anderson, R.M. 1994. Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. Lond., B, 256:231–238.

    Article  Google Scholar 

  • Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., and Markowitz, M. 1995. Rapid turnover of plasma virons and CD4 lymphocytes in HIV-1 infections. Nature, 373.

    Google Scholar 

  • Levin, B.R., Lipsitch, M., and Bonhoeffer, S. 1999. Population biology, evolution, and infectious disease: Convergence and synthesis. Science, 283:806–809.

    Article  Google Scholar 

  • Levin, S.A. 1983a. Coevolution. In Population Biology, Lecture Notes in Biomathematics (H. Freedman and C. Strobeck, eds.), pp. 328–334, Berlin: Springer-Verlag.

    Google Scholar 

  • Levin, S.A. 1983b. Some approaches to the modelling of coevolutionary interactions. In Coevolution (M. Nitecki, ed.), pp. 21–65 Chicago, Illinois: University of Chicago Press.

    Google Scholar 

  • Levin, S.A. 1999. Fragile Dominion: Complexity and the Commons. Reading, MA: Perseus Books.

    Google Scholar 

  • Levin, S.A., Grenfell, B., Hastings, A., and Perelson, A.S. 1997. Mathematical and computational challenges in population biology and ecosystem science. Science, 275:334–343.

    Article  MATH  Google Scholar 

  • Levin, S.A. and Pimentel, D. 1981. Selection of intermediate rates of increase in parasite-host systems. American Naturalist, 117:308–315.

    Article  MathSciNet  Google Scholar 

  • Lloyd and May, R.M. 1996. Spatial heterogeneity in epidemic models. J. Theoretical Biology, 179:1–11.

    Article  Google Scholar 

  • McLean, A.R. and Nowak, M.A. 1992. Competition between zidovudine sensitive and resistant strains of HIV. AIDS, 6:71–79.

    Article  Google Scholar 

  • Nowak, M.A., Anderson, R.M., McLean, A.R., Wolfs, T., Goudsmit, J., and May, R.M. 1991. Antigenic diversity thresholds and the development of AIDS. Science, 254:963–966.

    Article  Google Scholar 

  • Nowak, M.A., May, R.M., Phillips, R.E., Rowland-Jones, S., Lalloo, D.G., McAdam, S., Klenerman, P., Köppe, B., Sigmund, K., Bangham, C.R.M., and McMichael, A.J. 1995a. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature, 375:606–611.

    Article  Google Scholar 

  • Nowak, M.A., May, R.M., and Sigmund, K. 1995b. Immune responses against multiple epitopes. J. Theoretical Biology, 175:325–353.

    Article  Google Scholar 

  • Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., and Ho, D.D. 1996. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science, 271:1582–1586.

    Article  Google Scholar 

  • Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., and Shaw, G.M. 1995. Viral dynamics in HIV-1 infection. Nature, 373:117–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Levin, S.A. (2002). New Directions in the Mathematics of Infectious Disease. In: Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., Yakubu, AA. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory. The IMA Volumes in Mathematics and its Applications, vol 126. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0065-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0065-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6550-4

  • Online ISBN: 978-1-4613-0065-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics