Use of Metapopulation Models in Conservation Planning

  • David R. Breininger
  • Mark A. Burgman
  • H. Resit Akçakaya
  • Michael A. O’Connell

Abstract

We focus on approaches to predict the effects of landscape change on population viability by first introducing concepts and emerging ideas. We then review recent applications of metapopulation models and summarize principles for applying metapopulation models in conservation planning. We end by identifying knowledge gaps that prevent broader applications of metapopulation models and by providing general research approaches for filling those gaps.

Keywords

Burning Vortex Migration Autocorrelation Poss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akçakaya, H.R. 2000. Population viability analyses with demographically and spatially structured models. Ecol. Bull. 48:23–38.Google Scholar
  2. Akçakaya, H.R., and Atwood, J.L. 1997. A habitat-based metapopulation model of the California Gnatcatcher. Conserv. Biol. 11:422–434.CrossRefGoogle Scholar
  3. Akçakaya, H.R., and Baur, B. 1996. Effects of population subdivision and catastrophes on the persistence of a land snail metapopulation. Oecologia 105:475–483.CrossRefGoogle Scholar
  4. Akçakaya, H.R., Burgman, M.A., and Ginzburg, L.R. 1999. Applied Population Ecology. Second Edition. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
  5. Akçakaya, H.R., McCarthy, M.A., and Pearce, J. 1995. Linking landscape data with population viability analysis: management options for the Helmeted Honey eater. Biol Conserv. 73:169–176.CrossRefGoogle Scholar
  6. Akçakaya, H.R., and Raphael, M.G. 1998. Assessing human impact despite uncertainty: viability of the Northern Spotted Owl metapopulation in the northwestern USA. Biodiver. Conserv. 7:875–894.CrossRefGoogle Scholar
  7. Akçakaya, H.R., and Sjogren-Gulve, P. 2000. Population viability analysis in conservation planning: an overview. Ecol. Bull. 48:9–21.Google Scholar
  8. Antonovics, J., Thrall, PH., and Jarosz, A.M. 1997. Genetics and the spatial ecology of species interactions: the Silene-Ustilago system. In Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, eds. D. Tilman and P. Kareiva, pp. 158–184. Princeton: Princeton University Press.Google Scholar
  9. Armbruster, P., Fernando, P., and Lande, R. 1999. Time frames for population viability analysis of species with long generations: an example with Asian elephants. Anim. Conserv. 2:69–73.CrossRefGoogle Scholar
  10. Beier, P. 1993. Determining minimum habitat areas and habitat corridors for cougars. Conserv. Biol. 7:94–108.CrossRefGoogle Scholar
  11. Beissinger, S.R. 1995. Modeling extinction in periodic environments: Everglades water levels and Snail Kite population viability. Ecol. Appl. 5:618–631.CrossRefGoogle Scholar
  12. Beissinger, S.R., and Westphal, M.I. 1998. On the use of demographic models of population viability analysis in endangered species management. J. Wildl. Manage. 62:821–841.CrossRefGoogle Scholar
  13. Boughton, D.A. 1999. Empirical evidence for complex source-sink dynamics with alternative states in a butterfly metapopulation. Ecology 80:2727–2739.Google Scholar
  14. Boyce, M.S. 1997. Population viability analysis: adaptive management for threatened and endangered species. In Ecosystem Management: Applications for Sustainable Forest and Wildlife Resources, eds. M.S. Boyce and A. Haney, pp. 226–236. New Haven, Connecticut: Yale University Press.Google Scholar
  15. Bradstock, R.A., Bedward, M., Kenny, B.J., and Scott, J. 1998. Spatially explicit simulation of the effect of prescribed burning on fire regimes and plant extinctions in shrublands typical of southeastern Australia. Biol. Conserv. 86:83–95.CrossRefGoogle Scholar
  16. Breininger, D.R. 1999. Florida Scrub-Jay demography and dispersal in a fragmented landscape. Auk 116:520–527.Google Scholar
  17. Breininger, D.R., Burgman, M.A., and Stith, B.M. 1999. Influence of habitat, catastrophes, and population size on extinction risk in Florida Scrub-Jay populations. Wildl. Soc. Bull. 27:810–822.Google Scholar
  18. Breininger, D.R., Larson, V.L., Duncan, B.W., and Smith, R.B. 1998. Linking habitat suitability to demographic success in Florida Scrub-Jays. Wildl. Soc. Bull. 26:118–128.Google Scholar
  19. Brook, B.W. 2000. Pessimistic and optimistic bias in population viability analysis. Conserv. Biol. 14:564–566.CrossRefGoogle Scholar
  20. Brook, B.W., Burgman, M.A., and Frankham, R. 2000a. Differences and congruencies between PVA packages: the importance of sex ratio for predictions of extinction risk. Conserv. Ecol. [online] 4:6. Available from the Internet: www.consecol.org/vol4/issl/art6.Google Scholar
  21. Brook, B.W., O’Grady, J.J., Chapman, A.P., Burgman, M.A., Akçakaya, H.R., and Frankham, R. 2000b. Predictive accuracy of population viability analysis in conservation biology. Nature 404:385–387.PubMedCrossRefGoogle Scholar
  22. Burgman, M.A., Breininger, D.R., Duncan, B.W., and Ferson, S. 2001. Setting reliability bounds on habitat suitability indices. Ecol. Appl. 11:70–78.CrossRefGoogle Scholar
  23. Burgman, M.A., Ferson, S., and Akçakaya, H.R. 1993. Risk Assessment in Conservation Biology. London: Chapman and Hall.Google Scholar
  24. Bushing, WW. 1997. GIS-based gap analysis of an existing marine reserve network around Santa Catalina Island. Intl. J. Marine Geodesy 20:205–234.CrossRefGoogle Scholar
  25. Cantrell, R.S., and Cosner, C. 1999. Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to reserve design. Theor. Pop. Biol. 55:189–207.CrossRefGoogle Scholar
  26. Conroy, M.J., Cohen, Y., James, F.C., Matsinos, Y.G., and Maurer, B.A. 1995. Parameter estimation, reliability, and model improvement for spatially explicit models of animal populations. Ecol. Appl. 5:17–19.CrossRefGoogle Scholar
  27. Cooper, A.B., and Mangel, M. 1998. The dangers of ignoring metapopulation structure for the conservation of salmonids. Fisheries Bull. 97:213–226.Google Scholar
  28. Crooks, K.R., and Soulé, M.E. 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566.CrossRefGoogle Scholar
  29. DeAngelis, D.L., and Gross, L.J. 1992. Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems. New York: Chapman and Hall.Google Scholar
  30. DeAngelis, D.L., Gross, L.J., Huston, M.A., Wolff, W.F., Fleming, D.M., Comiskey, E.J., and Sylvester, S.M. 1998. Landscape modeling for Everglades ecosystem restoration. Ecosystems 1:64–75.CrossRefGoogle Scholar
  31. Diffendorfer, J.E. 1998. Testing models of source-sink dynamics and balanced dispersal. Oikos 81:417–433.CrossRefGoogle Scholar
  32. Doak, D.F. 1995. Source-sink models and the problem of habitat degradation: general models and applications to the Yellowstone grizzly. Conserv. Biol. 9:1370–1379.CrossRefGoogle Scholar
  33. Doak, D.F., and Mills, L.S. 1994. A useful role for theory in conservation. Ecology 75:615–626.CrossRefGoogle Scholar
  34. Doncaster, C.P., Clobert, J., Doligez, B., Gustafsson, L., and Danchin, E. 1997. Balanced dispersal between spatially varying local populations: an alternative to the source-sink model. Am. Nat. 150:425–445.PubMedCrossRefGoogle Scholar
  35. Donovan, T.M., Lamberson, R.H., Kimber, A., Thompson, F.R., III, and Faaborg, J. 1995. Modeling the effects of habitat fragmentation on source and sink demography of Neotropical migrant birds. Conserv. Biol. 9:1396–1407.CrossRefGoogle Scholar
  36. Drechsler, M., Lamont, B.B., Burgman, M.A., Akçakaya, H.R., Witkowski, E.T.F., and Supriyadi. 1998. Modeling the persistence of an apparently immortal Banksia species after fire and land clearing. Biol. Conserv. 88:249–259.CrossRefGoogle Scholar
  37. Drechsler, M., and Wissel, C. 1998. Trade-offs between local and regional scale management of metapopulations. Biol. Conserv. 83:31–41.CrossRefGoogle Scholar
  38. Driscoll, D.A. 1998. Genetic structure, metapopulation processes and evolution influence the conservation strategies for two endangered frog species. Biol. Conserv. 83:43–54.CrossRefGoogle Scholar
  39. Dunning, J.B., Jr., Stewart, D.J., Danielson, B.J., Noon, B.R., Root, T.L., Lamberson, R.H., and Stevens, E.E. 1995. Spatially explicit population models: current forms and future uses. Ecol. Appl. 5:3–11.CrossRefGoogle Scholar
  40. Ferson, S. 1996. What Monte Carlo methods cannot do. Human Ecol. Risk Assess. 2:990–1007.CrossRefGoogle Scholar
  41. Ferson, S., Root, W., and Kuhn, R. 1998. RAMAS/RiskCalc: Risk Assessment with Uncertain Numbers. Setauket, New York: Applied Biomathematics.Google Scholar
  42. Fieberg, J., and Ellner, S.P. 2000. When is it meaningful to estimate an extinction probability? Ecology 81:2040–2047.CrossRefGoogle Scholar
  43. Garshelis, D.L. 2000. Delusions in habitat evaluation: measuring use, selection, and importance. In Research Techniques in Animal Ecology: Controversies and Consequences, eds. L. Boitani and T.K. Fuller, pp. 111–164. New York: Columbia University Press.Google Scholar
  44. Goldwasser, L., Ferson, S., and Ginzburg, L. 2000. Variability and measurement error in extinction risk analysis: the Northern Spotted Owl on the Olympic Peninsula. In Quantitative Methods for Conservation Biology eds. S. Ferson and M. Burgman, pp. 169–187. New York: Springer-Verlag.CrossRefGoogle Scholar
  45. Gould, W.R., and Nichols, J.D. 1998. Estimation of temporal variability of survival in animal populations. Ecology 79:2531–2538.CrossRefGoogle Scholar
  46. Haight, R.G., Mladenoff, D.J., and Wydeven, A.P. 1998. Modeling disjunct gray wolf populations in semi-wild landscapes. Conserv. Biol. 12:879–888.CrossRefGoogle Scholar
  47. Hanski, I. 1997. Habitat destruction and metapopulation dynamics. In The Ecological Basis for Conservation: Heterogeneity, Ecosystems, and Biodiversity, eds. S.T.A. Pickett, R.S. Ostfeld, M. Shachak, and G.E. Likens, pp. 217–228. New York: Chapman and Hall.Google Scholar
  48. Hanski, I. 1999. Metapopulation Ecology. Oxford, United Kingdom: Oxford University Press.Google Scholar
  49. Hanski, I., Moilanen, A., Pakkala, T., and Kuussaari, M. 1996. The quantitative incidence function model and persistence of an endangered butterfly metapopulation. Conserv. Biol. 10:578–590.CrossRefGoogle Scholar
  50. Harrison, S., and Taylor, A.D. 1997. Empirical evidence for metapopulation dynamics. In Metapopulation Biology: Ecology, Genetics, and Evolution, eds. I.A. Hanski and M.E. Gilpin, pp. 27–42. San Diego, California: Academic Press.Google Scholar
  51. Heppell, S., Crouse, D.T., and Crowder, L.B. 2000. Using matrix models to focus research and management efforts in conservation. In Quantitative Methods for Conservation Biology, eds. S. Ferson and M. Burgman, pp. 148–168. New York: Springer-Verlag.CrossRefGoogle Scholar
  52. Hess, G. 1996. Disease in metapopulation models: implications for conservation. Ecology 77:1617–1632.CrossRefGoogle Scholar
  53. Hokit, D.G., Stith, B.M., and Branch, L.C. 1999. Effects of landscape structure in Florida scrub: a population perspective. Ecol. Appl. 9:124–135.CrossRefGoogle Scholar
  54. Holsinger, K.E., and Vitt, P. 1997. The future of conservation biology: what is a geneticist to do? In The Ecological Basis for Conservation: Heterogeneity, Ecosystems, and Biodiversity, eds. S.T.A. Pickett, R.S. Ostfeld, M. Shachak, and G.E. Likens, pp. 202–216. New York: Chapman and Hall.Google Scholar
  55. Holthausen, R.S., Raphael, M.G., McKelvey, K.S., Forsman, E.D., Starkey, E.E., and Seamen, D.E. 1995. The Contribution of Federal and Non-Federal Habitat to Persistence of the Northern Spotted Owl on the Olympic Peninsula, Washington: Report of the Reanalysis Team. General Technical Report PNW-GTR 352. Portland, Oregon: USDA Forest Service, Pacific Northwest Research Station.Google Scholar
  56. Howe, R.W., Davis, G.J., and Mosca, V. 1991. The demographic significance of “sink” populations. Biol Conserv. 57:239–255.CrossRefGoogle Scholar
  57. James, M.K., Mason, L.B., and Bode, L. 1997. Larval transport modeling in the Great Barrier Reef. In The Great Barrier Reef: Science, Use and Management: A National Conference, eds. N. Turia and C. Dalliston, Volume 6, Session 6. Townsville, Australia: Great Barrier Reef Marine Park Authority.Google Scholar
  58. Kareiva, P. 1990. Population dynamics in spatially complex environments: theory and data. Phil Trans. R. Soc. London, Ser. B. 330:175–190.CrossRefGoogle Scholar
  59. Kareiva, P., Skelly, D., and Ruckelhaus, M. 1997. Reevaluating the use of models to predict the consequences of habitat loss and fragmentation. In The Ecological Basis for Conservation: Heterogeneity, Ecosystems, and Biodiversity, eds. S.T.A. Pickett, R.S. Ostfeld, M. Shachak, and G.E. Likens, pp. 156–165. New York: Chapman and Hall.Google Scholar
  60. Kean, J.M., and Barlow, N.D. 2000. The effects of density-dependence and local dispersal in individual-based stochastic populations. Oikos 88:282–290.CrossRefGoogle Scholar
  61. Kindvall, O. 1999. Dispersal in a metapopulation of the Bush Cricket, Metrioptera bicolor (Orthoptera: Tettigoniidae). J. Anim. Ecol. 68:172–185.CrossRefGoogle Scholar
  62. Lacy, R.C. 1993. VORTEX: a computer simulation for use in population viability analysis. Wildl. Res. 20:45–65.CrossRefGoogle Scholar
  63. LaHaye, W.S., Gutierrez, R.J., and Akçakaya, H.R. 1994. Spotted Owl meta-population dynamics in southern California. J. Anim. Ecol. 63:775–785.CrossRefGoogle Scholar
  64. Lamberson, R.H., McKelvey, R., Noon, B.R., and Voss, C. 1992. A dynamic analysis of Northern Spotted Owl viability in a fragmented forest landscape. Conserv. Biol. 6:505–512.CrossRefGoogle Scholar
  65. Lande, R. 1988. Genetics and demography in biological conservation. Science 241:1455–1460.PubMedCrossRefGoogle Scholar
  66. Lawes, M.J., Mealin, P.E., and Piper, S.E. 2000. Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented Afromontane forest in South Africa. Conserv. Biol. 14:1088–1098.CrossRefGoogle Scholar
  67. Lee, D.C. 2000. Assessing land-use impacts on bull trout using Bayesian belief networks. In Quantitative Methods for Conservation Biology, eds. S. Ferson and M. Burgman, pp. 127–147. New York: Springer-Verlag.CrossRefGoogle Scholar
  68. Letcher, B.H., Priddy, J.A., Walters, J.R., and Crowder, L.B. 1998. An individual-based, spatially explicit simulation model of the population dynamics of the endangered Red-cockaded Woodpecker, Picoides borealis. Biol Conserv. 86:1–14.CrossRefGoogle Scholar
  69. Lindenmayer, D.B., Lacy, R.C., and Pope, M.L. 2000. Testing a simulation model for population viability analysis. Ecol. Appl. 10:580–597.CrossRefGoogle Scholar
  70. Lindenmayer, D.B., and Possingham, H.P. 1995. Modeling the impacts of wildfire on the Australian arboreal marsupial, Leadbeater’s possum, Gymnobelideus leadbeateri. For. Ecol. Manage. 74:197–222.CrossRefGoogle Scholar
  71. Lindenmayer, D.B., and Possingham, H.P. 1996. Ranking conservation and timber management options for Leadbeater’s possum in southeastern Australia using population viability analysis. Conserv. Biol. 10:235–251.CrossRefGoogle Scholar
  72. Litvaitis, A.J., and Villafuerte, R. 1996. Factors affecting the persistence of New England cottontail metapopulations: the role of habitat management. Wildl Soc. Bull. 24:686–693.Google Scholar
  73. Liu, J. 1993. ECOLECON: An ECOLogical-ECONomic model for species conservation in complex forest landscapes. Ecol. Model. 70:63–87.CrossRefGoogle Scholar
  74. Ludwig, D. 1998. Is it meaningful to estimate a probability of extinction? Ecology 80:298–310.CrossRefGoogle Scholar
  75. MacDonald, D.W., Mace, G.M., and Barretto, G.R. 1999. The effects of predators on fragmented prey populations: a case study for the conservation of endangered prey. J. Zool. Soc. Lond. 247:486–506.Google Scholar
  76. Matsinos, Y.G., Wolff, W.F., and DeAngelis, D.L. 2000. Can individual-based models yield a better assessment of population viability? In Quantitative Methods for Conservation Biology, eds. S. Ferson and M. Burgman, pp. 188–198. New York: Springer-Verlag.CrossRefGoogle Scholar
  77. Matthysen, E. 1999. Nuthatches (Sitta europaea: Aves) in forest fragments: demography of a patchy population. Oecologia 119:501–509.CrossRefGoogle Scholar
  78. McCarthy, M.A. 1996. Modeling extinction dynamics of the Helmeted Honeyeater: effects of demography, stochasticity, inbreeding and spatial structure. Ecol. Model. 85:151–163.CrossRefGoogle Scholar
  79. McCarthy, M.A., and Broome, L.S. In press. A method for validating stochastic models of population viability: a case study of the mountain pygmy-possum (Burramys parvus). J. Anim. Ecol. Google Scholar
  80. McCarthy, M.A., Burgman, M.A., and Ferson, S. 1996. Logistic sensitivity and bounds for extinction risks. Ecol. Model. 86:297–303.CrossRefGoogle Scholar
  81. McCarthy, M.A., and Lindenmayer, D.B. 1999. Incorporating metapopulation dynamics of greater gliders into reserve design in disturbed landscapes. Ecology 80:651–667.CrossRefGoogle Scholar
  82. McCarthy, M.A., Lindenmayer, D.B., and Possingham, H.P. In press. Testing spatial PVA models of Australian Treecreepers (AVES: Climacteridae) in fragmented forest. Ecol. Appl. Google Scholar
  83. McKelvey, K.B., Noon, B.R., and Lamberson, R.H. 1992. Conservation planning for species occupying fragmented landscapes: the case of the Northern Spotted Owl. In Bi-otic Interactions and Global Changes, eds. P.M. Kareiva, J.G. Kingsolver, and R.B. Huey, pp. 424–450. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
  84. McPeek, M.A., and Holt, R.D. 1992. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140:1010–1027.CrossRefGoogle Scholar
  85. Meir, E., and Fagan, W.F. 2000. Will observation error and biases ruin the use of simple extinction models? Conserv. Biol. 14:148–154.CrossRefGoogle Scholar
  86. Menges, E.S. 1990. Population viability analysis for an endangered plant. Conserv. Biol. 4:52–62.CrossRefGoogle Scholar
  87. Menges, E.S., and Dolan, R.W 1998. Demographic viability of populations of Silene regia in midwestern prairies: relationships with fire management, genetic variation, geographic location, population size and isolation. J. Ecol. 86:63–78.CrossRefGoogle Scholar
  88. Moilanen, A., Smith, A.T., and Hanski, I. 1998. Long-term dynamics in a metapopulation of the American pika. Am. Nat. 152:530–542.PubMedCrossRefGoogle Scholar
  89. Mooij, W.M., and DeAngelis, D.L. 1999. Error propagation in spatially explicit population models: a reassessment. Conserv. Biol. 13:930–933.CrossRefGoogle Scholar
  90. Mumme, R.L., Schoech, S.J., Woolfenden, G.E., and Fitzpatrick, J.W. 2000. Life and death in the fast lane: demographic consequences of road mortality in the Florida Scrub-Jay. Conserv. Biol 14:501–512.CrossRefGoogle Scholar
  91. Murray, D.L., and Fuller, M.R. 2000. A critical review of the effects of marking on the biology of vertebrates. In Research Techniques in Animal Ecology, eds. L. Boitani and T.K. Fuller, pp. 15–64. New York: Columbia University Press.Google Scholar
  92. Nieminen, M., and Hanski, I. 1998. Metapopulations of moths on islands: a test of two contrasting models. J. Anim. Ecol 67:149–160.CrossRefGoogle Scholar
  93. Noon, B.R., McKelvey, K.B., and Murphy, D.D. 1997. Developing an analytical context for multispecies conservation planning. In The Ecological Basis for Conservation: Heterogeneity, Ecosystems, and Biodiversity, eds. S.T.A. Pickett, R.S. Ostfeld, M. Shachak, and G.E. Likens, pp. 43–59. New York: Chapman and Hall.Google Scholar
  94. Noss, R.F., O’Connell, M.A., and Murphy, D.D. 1997. The Science of Conservation Planning: Habitat Conservation Under the Endangered Species Act. Washington, DC: Island Press.Google Scholar
  95. Possingham, H.P. 1996. Decision theory and biodiversity management: how to manage a metapopulation. In Frontiers in Population Ecology, eds. R.B. Floyd, A.W. Sheppard, and P.J. DeBarro, pp. 391–398. Canberra, Australia: The Commonwealth Scientific and Industrial Research Organization.Google Scholar
  96. Possingham, H.P. 1997. State-dependent decision analysis for conservation biology. In The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity, eds. S.T.A. Pickett, R.S. Ostfeld, M. Shachak, and G.E. Likens, pp. 298–304. New York: Chapman and Hall.Google Scholar
  97. Pulliam, H.R. 1996. Sources and sinks: empirical evidence and population consequences. In Population Dynamics in Ecological Space and Time, eds. O.E. Rhodes, R.K. Chesser, and M.H. Smith, pp. 45–70. Chicago: University of Chicago Press.Google Scholar
  98. Pulliam, H.R., Dunning, J.B., and Liu, J. 1992. Population dynamics in complex landscapes: a case study. Ecol. Appl. 2:165–177.CrossRefGoogle Scholar
  99. Quintana-Ascencio, P.F., Dolans, R.W., and Menges, E.S. 1998. Hypericum cumulicola demography in unoccupied and occupied Florida scrub patches with different time-since-fire. J. Ecol 86:640–651.CrossRefGoogle Scholar
  100. Ruckelshaus, M., Hartway, C., and Kareiva, P. 1997. Assessing the data requirements of spatially explicit dispersal models. Conserv. Biol. 11:1298–1306.CrossRefGoogle Scholar
  101. Rushton, S.P., Lurz, P.W., South, A.B., and Mitchell-Jones, A. 1999. Modelling the distribution of red squirrels (Sciurus vulgaris) on the Isle of Wight. Anim. Conserv. 2:111–120.CrossRefGoogle Scholar
  102. Schumaker, N.H. 1996. Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225.CrossRefGoogle Scholar
  103. Sork, V.L., Campbell, D., Dyer, R., Fernandez, J., Nason, J. Petit, R., Smouse, P., and Steinberg, E. 1998. Proceedings From a Workshop on Gene Flow in Fragmented, Managed, and Continuous Populations. Research Paper Number 3. Santa Barbara, California: National Center for Ecological Analysis and Synthesis.Google Scholar
  104. Starfield, A.M. 1997. A pragmatic approach to modeling for wildlife management. J. Wildl Manage. 61:261–270.CrossRefGoogle Scholar
  105. Stith, B.M., Fitzpatrick, J.W., Woolfenden, G.E., and Pranty, B. 1996. Classification and conservation of metapopulations: a case study of the Florida Scrub-Jay. In Metapopulations and Wildlife Conservation, ed. D.R. McCullough, pp. 187–216. Washington, DC: Island Press.Google Scholar
  106. Sweanor, L.L., Logan, K.A., and Hornocker, M.G. 2000. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conserv. Biol. 14:798–808.CrossRefGoogle Scholar
  107. Taylor, B.L., Wade, RR., Stehn, R.A., and Cochrane, J.F. 1996. A Bayesian approach to classification criteria for Spectacled Eiders. Ecol. Appl. 6:1077–1089.CrossRefGoogle Scholar
  108. Turchin, P. 1998. Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
  109. Turner, M.G., Arthaud, G.J., Engstrom, R.T., Hejl, S.J., Liu, J., Loeb, S., and McKelvey, K. 1995. Usefulness of spatially explicit population models in land management. Ecol. Appl. 5:12–16.CrossRefGoogle Scholar
  110. Van Horne, B. 1983. Density as a misleading indicator of habitat quality. J. Wildl. Manage. 47:813–901.CrossRefGoogle Scholar
  111. Verboom, J. 1996. Modeling Fragmented Populations: Between Theory and Application in Conservation Planning. Wageningen, The Netherlands: Institute for Forestry and Nature Research.Google Scholar
  112. Watkinson, A.R., and Sutherland, WJ. 1995. Sources, sinks, and pseudo-sinks. J. Anim. Ecol. 64:126–130.CrossRefGoogle Scholar
  113. White, G.C. 2000. Population viability analysis: data requirements and essential analyses. In Research Techniques in Animal Ecology: Controversies and Consequences, eds. L. Boitani and T.K. Fuller, pp. 288–331. New York: Columbia University Press.Google Scholar
  114. White, G.C., and Garrott, R.A. 1990. Analysis of Radio-Tracking Data. New York: Academic Press.Google Scholar
  115. Wiens, J.A. 1997. Metapopulation dynamics and landscape ecology. In Metapopulation Biology: Ecology, Genetics, and Evolution, eds. I.A. Hanski and M.E. Gilpin, pp. 43–68. San Diego, California: Academic Press.Google Scholar
  116. Wiens, J.A., and Rotenberry, J.T. 1981. Censusing and the evaluation of avian habitat occupancy. Stud. Avian Biol. 6:522–532.Google Scholar
  117. Wooton, J.T., and Bell, D.A. 1992. A metapopulation model of the Peregrine Falcon in California: viability and management strategies. Ecol. Appl. 2:307–321.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • David R. Breininger
  • Mark A. Burgman
  • H. Resit Akçakaya
  • Michael A. O’Connell

There are no affiliations available

Personalised recommendations