Algebra pp 377-412 | Cite as

Algebraic Spaces

  • Serge Lang
Part of the Graduate Texts in Mathematics book series (GTM, volume 211)


This chapter gives the basic results concerning solutions of polynomial equations in several variables over a field k. First it will be proved that if such equations have a common zero in some field, then they have a common zero in the algebraic closure of k, and such a zero can be obtained by the process known as specialization. However, it is useful to deal with transcendental extensions of k as well. Indeed, if p is a prime ideal in k[X] = k[X 1, …, X n ], then k[X]/p is a finitely generated ring over k, and the images x i of X t in this ring may be transcendental over k, so we are led to consider such rings.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BeY.
    91]_C. Berenstein and A. Yger, Effective Bezout identities in Q[z 1,..., z n], Acta Math. 166 (1991), pp. 69–120MathSciNetMATHCrossRefGoogle Scholar
  2. [Br 87]
    D. Brownawell, Bounds for the degree in Nullstellensatz, Ann. of Math. 126 (1987), pp. 577–592MathSciNetMATHCrossRefGoogle Scholar
  3. [Br 88]
    D. Brownawell, Local diophantine nullstellen inequalities, J. Amer. Math. Soc. 1 (1988), pp. 311–322MathSciNetMATHCrossRefGoogle Scholar
  4. [Br 89]
    D. Brownawell, Applications of Cayley-Chow forms, Springer Lecture Notes 1380: Number Theory, Ulm 1987, H. P. Schlickewei and E. Wirsing (eds.), pp. 1-18Google Scholar
  5. [Ko 88]
    J. Kollar, Sharp effective nullstellensatz, J. Amer. Math. Soc. 1No. 4 (1988), pp. 963–975MathSciNetMATHCrossRefGoogle Scholar


  1. [Jo 80]
    J. P. Jouanolou, Idéaux résultants, Advances in Mathematics 37No. 3 (1980), pp. 212–238MathSciNetMATHCrossRefGoogle Scholar
  2. [Jo 90]
    J. P. Jouanolou, Le formalisme du résultant, Advances in Mathematics 90No. 2 (1991) pp. 117–263MathSciNetMATHCrossRefGoogle Scholar
  3. [Jo 91]
    J. P. Jouanolou, Aspects invariants de l’élimination, Départment de Mathématiques, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  4. [Ma 16]
    F. Macaulay, The algebraic theory of modular systems, Cambridge University Press, 1916Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Serge Lang
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations