Skip to main content

A Note on the Energy-Transport Limit of the Semiconductor Boltzmann Equation

  • Conference paper
Transport in Transition Regimes

Abstract

In this paper, we present a new scaling limit of the semiconductor Boltzmann equation which yields the so-called Energy-Transport model. This model consists of a set of continuity equations for the density and energy together with constitutive relations for the particle and energy fluxes. These fluxes are expressed in terms of gradients of the entropic variables, through a diffusivity matrix related to the Boltzmann collision operators. The present work is devoted to a scaling limit in which the only operator involved in the definition of the diffusivity is the elastic collision operator. Previous derivations required a two-step procedure, resorting to an intermediate model, the so-called Spherical Harmonics Expansion (or SHE) model. We shall present and review the relationship between all these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Albinus, A thermodynamically motivated formulation of the energy model of semiconductor devices, preprint No. 210, Weierstrass-Institut, Berlin (1995).

    Google Scholar 

  2. A.M. Anile and S. Pennisi, Thermodynamics derivation of the hydrodynamical model for charge transport in semiconductors, Phys. Rev. B 46: 13186–13193 (1992).

    Article  MATH  Google Scholar 

  3. C. Bardos, R. Santos, and R. Sentis, Diffusion approximation and computation of the critical size, Trans. A. M. S., 284: 617–649 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Maths. Phys. 37: 3306–3333 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Ben Abdallah, P. Degond, and S. Génieys, An energy-transport model for semiconductors derived from the Boltzmann equation, J. Stat. Phys. 84: 205–231 (1996).

    Article  MATH  Google Scholar 

  6. N. Ben Abdallah, P. Degond, A. Mellet, and F. Poupaud, Electron transport in semiconductor superlattices, to appear in Quarterly Appl. Math.

    Google Scholar 

  7. N. Ben Abdallah, L. Desvillettes, and S. Génieys, On the convergence of the Boltzmann equation for semiconductors towards an energy transport model, J. Stat. Phys., 98: 835–870 (2000).

    Article  MATH  Google Scholar 

  8. A. Bensoussan, J.L. Lions, and G.C. Papanicolaou, Boundary layers and homogenization of transport processes, J. Publ. RIMS Kyoto Univ. 15: 53–157 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Bringuier, Nonequilibrium statistical mechanics of drifting particles, Phys. Rev. E 61: 6351–6358 (2000).

    Article  Google Scholar 

  10. C. Cercignani, I. Gamba, and D. Levermore, A high field approximation to a Boltzmann-Poisson system in bounded domains, Appl. Math. Lett. 4: 111–118 (1997).

    Article  MathSciNet  Google Scholar 

  11. C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute gases, Springer, New-York, 1994.

    MATH  Google Scholar 

  12. S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases, Cambridge University Press, New-York, 1958.

    Google Scholar 

  13. P. Degond, Mathematical modelling of microelectronics semiconductor devices, in AMS/IP Studies in Advanced Mathematics, Vol. 15, AMS and International Press, 2000, pp. 77–110.

    MathSciNet  Google Scholar 

  14. P. Degond, An infinite system of diffusion equations arising in transport theory: the coupled spherical harmonies expansion model, Math. Methods and Models in the Applied Sciences 11: 903–932 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Degond and S. Génieys et A. Jüngel, A system of parabolie equations in nonequilibrium thermodynamics including thermal and electrical effects, Journal de Mathématiques Pures et Appliquées. 76: 991–1015 (1997).

    Article  MATH  Google Scholar 

  16. P. Degond and S. Génieys et A. Jüngel, Symmetrization and entropy inequality for general diffusion equations, C. R. Acad. Sci. Paris 325: 963–968 (1997).

    MATH  Google Scholar 

  17. P. Degond and A. Jüngel, P. Pietra, Numerical discretization of energy-transport models for semiconductors with non-parabolic band structure, SIAM on Scientific Computing 22: 986–1007 (2000).

    Article  MATH  Google Scholar 

  18. P. Degond, V. Latocha, L. Garrigues, and J.P. Boeuf, Electron Transport in Stationary Plasma Thrusters, Transp. Theory and Stat. Phys 27: 203–221 (1998).

    Article  MATH  Google Scholar 

  19. P. Degond, A. Nouri, and C. Schmeiser, Macroscopic models for ionization in the presence of strong electric fields, Transp. Theory and Stat. Phys., 29: 551–561 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Degond and S. Mancini, Diffusion driven by collisions with the boundary, Asymptotic Analysis 27: 47–73 (2001).

    MathSciNet  MATH  Google Scholar 

  21. S.R. de Groot and P. Mazur, Non-equilibrium thermodynamics, Dover, New-York, 1984 (reprint of the original book published in 1962 by North-Holland).

    Google Scholar 

  22. P. Dmitruk, A. Saul, and L. Reyna, High electric field approximation in semiconductor devices, Appl. Math. Letters 5: 99–102 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  23. J.L. Delcroix and A. Bers, Physique des plasmas, CNRS éditions, Paris, 1994.

    Google Scholar 

  24. H. Federer, Geometric measure theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  25. H. Grad, Principles of the kinetie theory of gases, in Handbuch der Physik (S. Flügge ed.), Vol. XII, Springer, Berlin, 1958.

    Google Scholar 

  26. A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh, Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonic expansion of the Boltzmann transport equation, Solid State Electron. 36: 575–581 (1993).

    Article  Google Scholar 

  27. F. Golse and F. Poupaud, Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac, Asymptotic Analysis 6: 135–160 (1992).

    MathSciNet  MATH  Google Scholar 

  28. D.C. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys. 83: 1021–1065 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  29. P.A. Markowich, F. Poupaud, and C. Schmeiser, Diffusion approximation for nonlinear electron-phonon collision mechanisms, Math. Modelling and Num. Analysis 29: 857–869 (1995).

    MathSciNet  MATH  Google Scholar 

  30. P.A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer, Wien, 1990.

    Book  MATH  Google Scholar 

  31. I. Müller and T. Ruggeri, Extended thermodynamics, Springer, Berlin, 1993.

    Book  MATH  Google Scholar 

  32. G.C. Pomraning, The equations of radiation hydrodynamics, Pergamon, Oxford, 1973.

    Google Scholar 

  33. F. Poupaud, Diffusion approximation of the linear semiconductor equation: analysis of boundary layers, Asymptotic Analysis 4: 293–317 (1991).

    MathSciNet  MATH  Google Scholar 

  34. Yu. P. Raizer, Gas discharge Physics, Springer, Berlin, 1997.

    Google Scholar 

  35. L. Reggiani (ed), Hot electron transport in semiconductors, Springer, Berlin (1985).

    Google Scholar 

  36. C. Schmeiser and A. Zwirchmayr, Elastic and drift-diffusion limits of electron-phonon interaction in semiconductors, Math. Models and Meth. in Appl. Sci. 8: 37–53 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Stratton, Diffusion of hot and cold electrons in semiconductor barriers, Phys. Rev. 126: 2002–2014 (1962).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Degond, P., Levermore, C.D., Schmeiser, C. (2004). A Note on the Energy-Transport Limit of the Semiconductor Boltzmann Equation. In: Abdallah, N.B., et al. Transport in Transition Regimes. The IMA Volumes in Mathematics and its Applications, vol 135. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0017-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0017-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6507-8

  • Online ISBN: 978-1-4613-0017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics