Skip to main content

Towards a Hybrid Monte Carlo Method for Rarefied Gas Dynamics

  • Conference paper
Transport in Transition Regimes

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 135))

Abstract

For the Boltzmann equation, we present a hybrid Monte Carlo method that is robust in the fluid dynamic limit. The method is based on representing the solution as a convex combination of a non-equilibrium particle distribution and a Maxwellian. The hybrid distribution is then evolved by Monte Carlo with an unconditionally stable and asymptotic preserving time discretization. Some computational simulations of spatially homogeneous problems are presented here and extensions to spatially non homogeneous situations discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Babovsky, On a simulation scheme for the Boltzmann equation. Mathematical Methods in the Applied Sciences, 8: 223–233, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  2. G.A. Bird. Molecular Gas Dynamics. Oxford University Press, London, 1976.

    Google Scholar 

  3. C. Cercignani. The Boltzmann Equation and its Applications. Springer -Verlag, 1988.

    Book  MATH  Google Scholar 

  4. S. Deshpande. A second order accurate kinetic theory based method for inviscid compressible flow. Journal of Computational Physics, 1979.

    Google Scholar 

  5. E. Gabetta, L. Pareschi, and G. Toscani. Relaxation schemes for nonlinear kinetic equations. SIAM J. Num. Anal., 34: 2168–2194, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.B. Hash and H.A. Hassan. Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods. J. Thermophys. Heat Transf., 10: 242–249, 1996.

    Article  Google Scholar 

  7. A.L. Garcia, J.B. Bell, W.Y. Crutchfield and B.J. Alder. Adaptive mesh and algorithm refinement using Direct Simulation Monte Carlo. Journal of Computational Physics, 154: 134–55, 1999.

    Article  MATH  Google Scholar 

  8. K. Nanbu. Direct simulation scheme derived from the Boltzmann equation. Journal of the Physical Society of Japan, 49: pp. 2042–2049, 1980.

    Article  Google Scholar 

  9. L. Pareschi and R.E. Caflisch. An Implicit Monte Carlo method for rarefied gas dynamics I. The space homogeneous case. J. Comp. Phys., 154: 90–116, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Pareschi and G. Russo. Asymptotic preserving Monte-Carlo methods for the Boltzmann equation. Transp. Theo. Stat. Phys., 29: 415–430, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Pareschi and G. Russo. Time Relaxed Monte Carlo methods for the Boltzmann equation. SIAM J. Sci. Comput., 23(4): 1253–1273, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  12. D.I. Pullin. Direct simulation methods for compressible inviscid ideal gas flow. Journal of Computational Physics, 34: 231–44, 1980.

    Article  MATH  Google Scholar 

  13. R. Roveda, D.B. Goldstein, and P.L. Varghese. Hybrid Euler/Direct Simulation Monte Carlo calculation of unsteady sit flow. Preprint, 2000.

    Google Scholar 

  14. P. Letallec and F. Mallinger. Coupling Boltzmann and Navier-Stokes by half fluxes. Journal of Computational Physics, 136: 51–67, 1997.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Caflisch, R.E., Pareschi, L. (2004). Towards a Hybrid Monte Carlo Method for Rarefied Gas Dynamics. In: Abdallah, N.B., et al. Transport in Transition Regimes. The IMA Volumes in Mathematics and its Applications, vol 135. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0017-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0017-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6507-8

  • Online ISBN: 978-1-4613-0017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics