Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 409 Accesses

Abstract

There is scientific interest in the use of shock waves to generate material conditions that are extreme states of matter. In the strongest shock waves commonly generated in the laboratory, pressures of hundreds of gigapascals and corresponding temperatures of an electron volt or two may be reached. In porous materials pressures are usually lower but the temperatures can be significantly higher. In some cases it has been argued, on the basis of empirical evidence and induction, that certain processes measured in shocked systems would be most easily explained if the shocks were essentially discontinuous changes in the state of the material, i.e., mathematical and physical discontinuities. Later in this section a practical definition of a “physical” discontinuity is provided. Clearly, in a material made up of atoms, one must pick a scale that is satisfactory to the notion of “physically” discontinuous for the problem at hand. It is easy to see that there is a huge difference in striking a diatomic molecule impulsively on one atom in a direction along the axis connecting the atoms and in pushing on the same atom in the same direction gently over a longer period of time to get the molecule to the same total center of mass energy. This conceptual difference lies at the heart of the interest in the structure of shock waves. Are shocks catastrophic (impulsive on the scale of atoms or molecules) or not? If shocks can be catastrophic, how does it happen, how is the structure maintained, and what is the dissipative mechanism if there is one? Finally, is the state at the end of the shock process actually an equilibrium state or does one simply hope that it is?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Becker, Z. Physik 8, pp. 321–362 (1922)

    Article  ADS  Google Scholar 

  2. Ya.B. Zel‘dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York (1967).

    Google Scholar 

  3. H.M. Mott-Smith, Phys. Rev. 82, pp. 885–892 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. Sakurai, J. Fluid Mech. 3, pp. 255–260 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Ziering and F. Ek, Phys. Fluids, 4, pp. 765–766 (1961).

    Article  ADS  Google Scholar 

  6. P. Glansdorf, Phys. Fluids, 5, pp. 371–379 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  7. [7] D.B. Hayes and D.E. Grady, Shock Waves in Condensed Matter—1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 412–416 (1982).

    Google Scholar 

  8. D.A. Rose and C.C. Martens, J. Phys. Chem. A, 101, pp. 4613–4620 (1997).

    Article  Google Scholar 

  9. P. Embid and M. Baer, Mathematical Analysis of a Two-Phase Model for Reactive Granular Flow, Sandia National Laboratories report SAND88-3302, Dec 1989.

    Google Scholar 

  10. A.C. Eringen, Continuum Physics, Vol III, pp 1–127, Academic Press, New York (1976).

    Google Scholar 

  11. D.C. Wallace, Phys. Rev. B., 22, p. 4 (1980).

    Google Scholar 

  12. J.W. Swegle and D.E. Grady, J. Appl. Phys. 58, p. 692 (1985).

    Article  ADS  Google Scholar 

  13. D.C. Wallace, Phys. Rev. B 24], pp. 5597–5606 (1981).

    Article  ADS  Google Scholar 

  14. R.A. Graham, J. Chem. Phys. 83, p. 23 (1979).

    Google Scholar 

  15. K. Huang, Statistical Mechanics, 2nd Edition, John Wiley and Sons, New York (1987)

    MATH  Google Scholar 

  16. J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, Chemical Physics 251, pp. 237–258 (2000).

    Article  ADS  Google Scholar 

  17. D.W. Brenner, D.H. Robertson, M.L. Elert, and C.T. White, Phys. Rev. Lett. 70, p. 2174 (1993); 76, p. 2202(E) (1996).

    Article  ADS  Google Scholar 

  18. T.C. Germann, et al., in “Proceedings of the 12th Symposium (International) on Detonation,” San Diego, CA, 11–16 Aug 2002 in press.

    Google Scholar 

  19. D.R. Bland, J. Inst. Maths. Applies. 1, pp. 56–75, (1964).

    Article  MathSciNet  Google Scholar 

  20. G. Tas J. Franken S.A. Hambir D.E. Hare and D.D. Dlott Phys. Rev. Lett. 78 4585 1997

    Article  ADS  Google Scholar 

  21. R. Evans, A.D. Badger, F. Fallies, M. Mahdieh, T.A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, Phys. Rev. Lett. 77, p. 3359 (1996).

    Article  ADS  Google Scholar 

  22. K.T. Gahagan, D.S. Moore, D.J. Funk, R.L. Rabie, and S.J. Buelow, Phys. Rev. Lett. 85, p. 15 (2000).

    Article  Google Scholar 

  23. H. Tups and K. Syassen, J. Phys. F: Met. Phys. 14, p. 2753 (1984).

    Article  ADS  Google Scholar 

  24. D.J. Funk, D.S. Moore, K.T. Gahagan, S.J. Buelow, J.H. Reho, G.L. Fisher, and R.L. Rabie, “Ultrafast measurement of the optical properties of aluminium during shock-wave breakout,” Phys. Rev. B 64, p. 115114–1 (2001)

    Article  ADS  Google Scholar 

  25. H.O. Jeschke, M.E. Garcia, and K.H. Bennemann, Phys. Rev. Lett. 87, p. 1 (2001).

    Article  Google Scholar 

  26. K. Lu and Y. Li, Phys. Rev. Lett. 80, p. 20 (1998).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rabie, R.L. (2003). The Discontinuous Shock—Fact or Fancy?. In: Horie, Y., Davison, L., Thadhani, N.N. (eds) High-Pressure Shock Compression of Solids VI. Shock Wave and High Pressure Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0013-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0013-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6554-2

  • Online ISBN: 978-1-4613-0013-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics