Skip to main content

What Is a Shock Wave to an Explosive Molecule?

  • Chapter
High-Pressure Shock Compression of Solids VI

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

An explosive molecule is a metastable chemical species that reacts exothermically given the correct stimulus. Impacting an explosive with a shock wave is a “wake-up call” or “trigger” that compresses and heats the molecule. The energy deposited by the shock wave must be distributed to the vibrational modes of the explosive molecule before chemical reaction can occur. If the shock pressure and temperature are high enough and last long enough, exothermic chemical decomposition can lead to the formation of a detonation wave. For gaseous, liquid, and perfect single-crystal solid explosives, after an induction time, chemical reaction begins at or near the rear boundary of the charge. This induction time can be calculated by high-pressure, high-temperature transition state theory. A “superdetonation” wave travels through the preshocked explosive until it overtakes the initial shock wave and then slows to the steady state Chapman-Jouguet (C-J) velocity. In heterogeneous solid explosives, initiation of reaction occurs at “hot spots” created by shock compression. If there is a sufficient number of large and energetic enough “hot spots,” these ignition sites grow creating a pressure pulse that overtakes the leading shock front causing detonation. Because the chemical energy is released well behind the leading shock front of a detonation wave, a mechanism is required for this energy to reinforce the leading shock front and maintain its overall constant velocity. This mechanism is the amplification of pressure wavelets in the reaction zone by the process of de-excitation of the initially highly vibrationally excited reaction product molecules. This process leads to the development of the three-dimensional structure of detonation waves observed for all explosives. In a detonation wave, the leading shock wave front becomes a “burden” for the explosive molecule to sustain by its chemical energy release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.J. Dick, A.R. Martinez, and R.S. Hixson, in Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Arlington, VA, pp. 317–324, (1998).

    Google Scholar 

  2. C.M. Tarver, P.A. Urtiew, S.K. Chidester, and L.G. Green, Propellants, Explosives, Pyrotechnics 18, pp. 117–127 (1993).

    Article  Google Scholar 

  3. J.E. Field, N.K. Bourne, S.J.P. Palmer, and S.M. Walley, Phil. Trans. R. Soc. Lond. A 339, pp. 269–299 (1992).

    Article  ADS  Google Scholar 

  4. S.K. Chidester, C.M. Tarver, and R.G. Garza, in Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Arlington VA, pp. 93–100 (1998).

    Google Scholar 

  5. D.J. Idar, R.A. Lucht, J.W. Straight, R.J. Scammon, R.V. Browning, J. Middleditch, J.K. Dienes, C.B. Skidmore, and G.A. Buntain, in Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Arlington, VA, pp. 101–110 (1998).

    Google Scholar 

  6. C.M Tarver, J.O. Hallquist, and L.M. Erickson, in Eighth Symposium (International) on Detonation (ed. J.M. Short), Naval Surface Weapons Center NSWC MP86-194, Silver Spring, MD, pp. 951–961 (1985).

    Google Scholar 

  7. A.W. Campbell and J.R. Travis, in Eighth Symposium (International) on Detonation (ed. J.M. Short), Naval Surface Weapons Center NSWC MP86-194, Silver Spring, MD, pp. 1057–1068 (198

    Google Scholar 

  8. C.M. Tarver, T.M Cook, P.A. Urtiew, and W.C. Tao, in Tenth Symposium (International) on Detonation, Office of Naval Research ONR 33395-12, Arlington, VA, pp. 696–703 (1993).

    Google Scholar 

  9. Y.B. Zel‘dovich and Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1966).

    Google Scholar 

  10. E.F. Greene and J.P. Toennis, Chemical Reactions in Shock Waves, Academic Press, New York (1964).

    Google Scholar 

  11. X. Hong, S. Chen, and D.D. Dlott, J. Phys. Chem. 99, pp. 9102–9109 (1995).

    Article  Google Scholar 

  12. W. Holmes, R.S. Francis, and M.D. Fayer, J. Chem. Phys. 110, pp. 3576–3583 (1999).

    Article  ADS  Google Scholar 

  13. R.E. Weston, Jr. and G.W. Flynn, Ann. Rev. Phys. Chem. 43, pp. 559–592 (1993).

    Article  ADS  Google Scholar 

  14. C.M. Tarver, Comb. Flame 46, pp. 111–133 (1982).

    Article  Google Scholar 

  15. V. Bemshtein and I. Oref, J. Phys. Chem. 100, pp. 9738–9758 (1996).

    Article  Google Scholar 

  16. C.M. Tarver, Comb. Flame 46, pp. 135–155 (1982).

    Article  Google Scholar 

  17. C.M. Tarver, Comb. Flame 46, pp. 157–179 (1982).

    Article  Google Scholar 

  18. C.M. Tarver, in Shock Waves in Condensed Matter—1997 (eds. S.C. Schmidt, D.P. Dandekar, and J.W. Forbes), AIP Press, New York, pp. 301–304 (1998).

    Google Scholar 

  19. C.M Tarver, J. Phys. Chem. A 101, pp. 4845–4851 (1997).

    Article  Google Scholar 

  20. W. Fickett and W.C. Davis, Detonation, University of California Press, Berkeley, (1979).

    Google Scholar 

  21. J.H.S. Lee, Detonation Waves in Gaseous Explosives, in Handbook of Shock Waves, Volume 3 (eds. G. Ben-Dor, O. Igra, T. Elperin, and A. Lifshitz), Academic Press, New York, pp. 309–415 (2001).

    Google Scholar 

  22. C.S. Yoo and N.C. Holmes, in High-Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G. Samara, and M. Ross), AIP Press, New York, pp. 1567–1570 (1994).

    Google Scholar 

  23. C.M. Tarver, R.D. Breithaupt, and J.W. Kury, J. Appl. Phys. 81, pp. 7193–7202 (1997).

    Article  ADS  Google Scholar 

  24. C.M. Tarver, R. Shaw, and M. Cowperthwaite, J. Chem. Phys. 64, pp. 2665–2673 (1976).

    Article  ADS  Google Scholar 

  25. J.H. Kiefer and S.S. Kumaran, J. Chem. Phys. 99, pp. 3531–3544 (1993).

    Article  ADS  Google Scholar 

  26. L.G. Green, C.M. Tarver, and D.J. Erskine, in Ninth Symposium (International) on Detonation, Office of the Chief of Naval Research OCNR 113291-7, Arlington, VA, pp. 670–682 (1989).

    Google Scholar 

  27. H. Eyring, Science 199, pp. 740–743 (1978).

    Article  ADS  Google Scholar 

  28. A.A. Schilperood, in Seventh Symposium (International) on Detonation, Naval Surface Warfare Center NSWC MP 82-334, Annapolis, MD, pp. 575–582 (1982).

    Google Scholar 

  29. C.M. Tarver, S.K. Chidester, and A.L. Nichols, III, J. Phys. Chem. 100, pp. 5795–5799 (1996).

    Article  Google Scholar 

  30. C.M. Tarver and A.L. Nichols, III, in Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Arlington, VA, pp. 599–605 (1998).

    Google Scholar 

  31. R.L. Gustavsen, S.A. Sheffield, R.R. Alcon, C.M. Tarver, J.W. Forbes, and F. Garcia, in Shock Compression of Condensed Matter—2001 (eds. M.D. Furnish, N.N. Thadhani and Y. Horie), AIP Press, New York, pp. 1019–1026 (2002).

    Google Scholar 

  32. S.A. Sheffield, R.L. Gustavsen, L.G. Hill, and R.R. Alcon, in Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Arlington, VA, pp. 451–458 (1998)

    Google Scholar 

  33. R.L. Gustavsen, S.A. Sheffield, and R.R. Alcon, in Eleventh International Detonation Symposium, Office of Naval Research, ONR 33300-5, Arlington, VA, pp. 821–827 (1998).

    Google Scholar 

  34. C.M. Tarver, J.W. Forbes, F. Garcia, and P.A. Urtiew, in Shock Compression of Condensed Matter—2001, (eds. M.D. Furnish, N.N. Thadhani and Y. Horie), AIP Press, New York, pp. 1043–1046 (2002).

    Google Scholar 

  35. C.M. Tarver, J.W. Kury, and R.D. Breithaupt, (tiJ. Appl. Phys. 82, pp. 3771–3782 (1997).

    Google Scholar 

  36. J.W. Kury, R.D. Breithaupt, and C.M. Tarver, Shock Waves 9, pp. 227–237 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tarver, C.M. (2003). What Is a Shock Wave to an Explosive Molecule?. In: Horie, Y., Davison, L., Thadhani, N.N. (eds) High-Pressure Shock Compression of Solids VI. Shock Wave and High Pressure Phenomena. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0013-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0013-7_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6554-2

  • Online ISBN: 978-1-4613-0013-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics