Shock Experiments on a Preheated Basaltic Eucrite

  • Akira Yamaguchi
  • Toshimori Sekine
  • Hiroshi Mori
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


Shock metamorphism is one of the most important geologic processes occurring on meteorite parent bodies, as shock metamorphic effects are ubiquitous in meteorites [1]. Impacts occurred during the early metamorphic and volcanic period, and after the bodies had cooled. At the early stages of evolution of the meteorite parent bodies, impacts may have affected these geologic events [2]. Eucrites are pigeonite-plagioclase basalts and gabbros, and are among the oldest igneous rocks in the solar system, having been formed on the parent body at ~4.56 Ga. Almost all eucrites are shocked, brecciated, and metamorphosed, suggesting that impact metamorphism was a dominant geologic process on their parent body, 4 Vesta. Recently, it has been suggested that many eucrites were, in fact, shocked and brecciated during the early thermal metamorphism [3],[4]. Ibitira and EET90020 appear to have experienced shock heating during metamorphism [5], causing a partial melting of these rocks ~4.50 Ga ago [6],[7]. Thus, shock metamorphism certainly played an important role in evolution of the early, hot eucritic crust of the parent body.


Shock Pressure Parent Body Shock Effect Shock Experiment Recovered Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Bischoff and D. Stöffler, Eur. J. Mineral. 4, p. 707 (1992).Google Scholar
  2. [2]
    E.R.D. Scott, G.J. Taylor, H.E. Newsom, F. Herbert, M. Zolensky, and J.F. Kerridge, in Asteroid II (ed. R.P. Binzel, T. Geherels and MS. Matthews), Univ. Arizona Press, Tuscon, Arizona, p. 701 (1989).Google Scholar
  3. [3]
    K. Metzler, K.-D. Bobe, H. Palme, B. Spettel, and D. Stöffler, Planet. Space. Sci. 43, p. 499 (1995).ADSCrossRefGoogle Scholar
  4. [4]
    A. Yamaguchi, G.J. Taylor, and K. Keil, Icarus 124, p. 97 (1996).ADSCrossRefGoogle Scholar
  5. [5]
    M. Miyamoto, T. Mikouchi, and K. Kaneda, Meteor. Planet. Sci. 36, p. 231 (2001).ADSCrossRefGoogle Scholar
  6. [6]
    C. Floss, G. Corzaz, A. Yamaguchi, and K. Keil, Antarct. Meteorite Res. 13, p. 222 (2000).ADSGoogle Scholar
  7. [7]
    A. Yamaguchi, G.J. Taylor, K. Keil, C. Floss, G. Corzaz, L.E. Nyquist, D.D. Bogard, D. Garrison, Y. Reese, H. Wiesmann, and C. Shih, Geochim. Cosmochim. Acta 65, p. 3577 (2001).ADSCrossRefGoogle Scholar
  8. [8]
    O.B. James, Science 166, p. 1615 (1969).ADSCrossRefGoogle Scholar
  9. [9]
    S.W. Kieffer, R.B. Schaal, R. Gibbons, F. Hörz, D.J. Milton, and A. Dube, Proc. Lunar Sci. Conf. 7, p. 1391 (1976).ADSGoogle Scholar
  10. [10]
    R.B. Schaal and F. Hörz, Proc. Lunar Sci. Conf. 8, p. 1697 (1977).ADSGoogle Scholar
  11. [11]
    A.R. Huffman, J.M. Brown, N.L. Carter, and W.U. Reimold, J. Geophys. Res. 98, p. 22171 (1993).ADSCrossRefGoogle Scholar
  12. [12]
    R.T. Schmitt, Meteor. Planet. Sci. 35, p. 545 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    A. Deutsch and F. Langenhorst, Meteoritics 26, p. 331 (1991).ADSGoogle Scholar
  14. [14]
    A. Yamaguchi, T. Sekine, and H. Mori, Lunar Sci. Conf. 31, CD-ROM, #1149 (1999).Google Scholar
  15. [15]
    A. Yamaguchi, T. Sekine, and H. Mori, Antarct. Meteorites 10, p. 190 (2000).ADSGoogle Scholar
  16. [16]
    T.S. McCarthy, A.J. Erlank, and J.P. Willis, Earth Planet. Sci. Lett. 18, 433 (1973).ADSCrossRefGoogle Scholar
  17. [17]
    A. Yamaguchi and T. Sekine, Earth Planet. Sci. Lett. 175, 289 (2000).ADSCrossRefGoogle Scholar
  18. [18]
    T. Sekine, J. Mat. Sci. Lett. 8, p. 872 (1989).CrossRefGoogle Scholar
  19. [19]
    T. Sekine, M. Akaishi, N. Setaka, K. Kondo, J. Mat. Sci., 22, p. 3615 (1987).ADSCrossRefGoogle Scholar
  20. [20]
    Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets, Pergamon, New York, p. 1286 (1981).Google Scholar
  21. [21]
    D. Stöffler. Fortschr. Miner. 49, p. 50 (1972).Google Scholar
  22. [22]
    D. Stöffler, K. Keil, and E.R.D. Scott, Geochim. Cosmochim. Acta 55, p. 3845 (1991).ADSCrossRefGoogle Scholar
  23. [23]
    T. Kenkmann, U. Hornemann, and D. Stöffler, Meteor. Planet. Sci. 35, p. 1275 (2000).ADSCrossRefGoogle Scholar
  24. [24]
    E. Stolper E., Geochim. Cosmochim. Acta 41, p. 587 (1977).ADSCrossRefGoogle Scholar
  25. [25]
    A. Yamaguchi, G.J. Taylor, and K. Keil, Antarct. Meteorite Res. 10, p. 431 (1997).Google Scholar
  26. [26]
    A. Yamaguchi, H. Mori, and H. Takeda, Meteoritics 28, p. 462 (1993).ADSGoogle Scholar
  27. [27]
    J.S. Delaney and M. Prinz, in Field and Laboratory Investigations of Meteorites from Victoria Land and the Thiel Mountain Region, Antarctica, 1982–1983 and 1983–1984 (ed. U.B Marvin and G. J. MacPherson), Smithson. Contrib. Earth Sci. 28, p. 65 (1989).Google Scholar
  28. [28]
    T. Mikouchi, Antarct. Meteorite Res., 12, p. 151 (1999).ADSGoogle Scholar
  29. [29]
    M. Chen and A. El Goresy, Earth Planet. Sci. Lett. 179, p. 489 (2000).ADSCrossRefGoogle Scholar
  30. [30]
    P.S. Fiske, W.J. Nellis, M. Lipp, H. Lorenzana, M. Kikuchi, and Y. Syono, Science 270, p. 281 (1995).ADSCrossRefGoogle Scholar
  31. [31]
    J.G. Spray, Geology 28, p. 1119 (1995).ADSCrossRefGoogle Scholar
  32. [32]
    A. Yamaguchi, E.R.D. Scott, and K. Keil, Meteor. Planet. Sci. 34, p. 49 (1999).ADSCrossRefGoogle Scholar
  33. [33]
    K. Tomeoka, Y. Yamahana, and T. Sekine, Geochim. Cosmochim. Acta 63, p. 3683 (1999).ADSCrossRefGoogle Scholar
  34. [34]
    K. Keil, D. Stöffler, S.G. Love, and E.R.D. Scott, Meteorit. Planet. Sci. 32, p. 349 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Akira Yamaguchi
  • Toshimori Sekine
  • Hiroshi Mori

There are no affiliations available

Personalised recommendations