Advertisement

Experimental Techniques for the Simulation of Shock Metamorphism: A Case Study on Calcite

  • F. Langenhorst
  • M. Boustie
  • A. Deutsch
  • U. Hornemann
  • Ch. Matignon
  • A. Migault
  • J. P. Romain
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)

Abstract

The cratered surfaces of asteroids and terrestrial planets underscore the importance of impacts for the formation and evolution of the solar system. Early in the history of the solar system such collisions were the mechanism for accretion of planetesimals and finally the planets themselves [1]. The effects of these still ongoing collisions are visible from the megascopic down to the submicroscopic length scale, i.e., they range from large impact craters and their ejecta blankets down to shock-metamorphic effects in minerals [2–4]. These effects form as a result of the interaction of strong shock waves with the affected solid matter.

Keywords

Shock Wave Shock Pressure Shock Effect Shock Experiment Flyer Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.W. Wetherill, Accumulation of terrestrial planets and implications concerning lunar origin, in Origin of the Moon (eds. K. Hartmann, R.J. Phillips, and G.J. Taylor) Lunar and Planetary Institute, Houston, pp. 519–550 (1984).Google Scholar
  2. [2]
    A. Deutsch and F. Langenhorst, Mineralogy of Astroblemes—Terrestrial Impact craters, Chapters 1.10.1–1.10.4., Introduction, Cratering and shock metamorphism, Characteristics of terrestrial impact structures, and Geological formations in and around impact structures, in Advanced Mineralogy, Vol. 3, Mineral matter in space, mantle ocean floor, biosphere, environmental management, and jewelry (ed. A.S. Marfunin), Springer, Berlin, pp. 76–95 (1998).Google Scholar
  3. [3]
    F. Langenhorst and A. Deutsch, Shock experiments on pre-heated α-and β-quartz: I. Optical and density data. Earth Planet. Sci. Lett. 125, pp. 407–420 (1994).ADSCrossRefGoogle Scholar
  4. [4]
    D. Stöffler and F. Langenhorst (1994), Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29, pp. 155–181.ADSGoogle Scholar
  5. [5]
    K. Tomeoka, Y. Yamahana, and T. Sekine, Experimental shock metamorphism of the Murchison CM carbonaceous chondrite. Geochim. Cosmochim. Acta 63(21), pp. 3683–3703 (1999).ADSCrossRefGoogle Scholar
  6. [6]
    A. Yamaguchi and T. Sekine, Monomineralic mobilization of plagioclase by shock: an experimental study. Earth Planet. Sci. Lett. 175, pp. 289–296 (2000).ADSCrossRefGoogle Scholar
  7. [7]
    H. Leroux, J.C. Doukhan, and F. Langenhorst, Microstructural defects in experimentally shocked diopside: A TEM characterization. Phys. Chem. Minerals 20, pp. 521–530 (1994).ADSCrossRefGoogle Scholar
  8. [8]
    F. Langenhorst, M. Boustie, A. Migault, and J.P. Romain, Laser shock experiments with nanoseconds pulses: a new tool for the reproduction of shock defects in olivine. Earth Planet. Sci. Lett. 173, pp. 333–342 (1999).ADSCrossRefGoogle Scholar
  9. [9]
    P. Agrinier, A. Deutsch, U. Schärer, and I. Martinez, Fast back-reactions of shock-released CO2 from carbonates: an experimental approach. Geochim. Cosmochim. Acta, (2001) in press.Google Scholar
  10. [10]
    R. Skála, J. Ederová, P. Matejka, and F. Hörz, Mineralogical studies of experimentally shocked dolomite: Implications for the outgassing of carbonates, in: Catastrophic Events & Mass Extinctions: Impacts and Beyond, (eds. C. Koeberl and K.G. MacLeod), Geol. Soc. Amer. Special Paper, (2001) in press.Google Scholar
  11. [11]
    M.B. Boslough, T.J. Ahrens, J. Vizgirda, R.H. Becker, and S. Epstein, Shock-induced devolatilization of calcite. Earth Planet. Sci. Lett. 61, pp. 166–170 (1982).ADSCrossRefGoogle Scholar
  12. [12]
    M.A. Lange and T.J. Ahrens, Shock-induced CO2 loss from CaC03; implications for early planetary atmospheres. Earth Planet. Scei. Lett. 83, pp. 1–15 (1986).Google Scholar
  13. [13]
    J.A. Tyburczy and T.J. Ahrens, Dynamic compression and volatile release of carbonates. J. Geophys. Res. 91, pp. 4730–4744 (1986).ADSCrossRefGoogle Scholar
  14. [14]
    I. Martinez, A. Deutsch, U. Schärer, Ph. Ildefonse, F. Guyot, and P. Agrinier, Shock recovery experiments on dolomite and thermodynamical modeling of impact-induced decarbonation. J. Geophys. Res. 100(B8), pp. 15,465–15,476 (1995).ADSCrossRefGoogle Scholar
  15. [15]
    R. Cauble, D.W. Phillion, T.J. Hoover, N.C. Holmes, J.D. Kilkenny, and R.W. Lee, Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70(4), pp. 2102–2105 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    P. Lambert, Les effets des ondes de choc naturelles et artificielles, et le cratère d’impact de Rochechouard. Ph.D. thesis, Université de Paris Sud, Centre d’Orsay, pp. 179–297 (1977).Google Scholar
  17. [17]
    D. Stöffler and R. Ostertag, The Ries impact crater. Fortschr. Miner. 61(2), pp. 71–116 (1983).Google Scholar
  18. [19]
    H.J. Melosh, Impact Cratering—A Geologic Process. Oxford monographs on geology and geophysics Nol1. Oxford University Press, New York, p. 245 (1989).Google Scholar
  19. [20]
    A. Migault, Concepts of shock waves, in Impacts on Earth (eds. D. Benest and C. Froeschlé) Springer, Berlin, pp. 79–112 (1998).CrossRefGoogle Scholar
  20. [21]
    J.B. Bibring, F. Cottet, M. Hallouin, Y. Langvin, and J.P. Romain, Simulation laser d’impacts de particules de très grande vitesse. J. Physique Lett. 44, pp. 189–194 (1983).CrossRefGoogle Scholar
  21. [22]
    S. Couturier, T. de Resseguier, M. Hallouin, J.P. Romain, and F. Bauer, Shock profile induced by short laser pulses. J. Appl. Phys. 79(12), pp. 9338–9342 (1996).ADSCrossRefGoogle Scholar
  22. [23]
    P. Cordier, J.C. Doukhan, A. Migault, and J.P. Romain, Microstructural investigation of quartz submitted to ultra-short shock loading. J. Materials Sci. 30, pp. 4009–4013 (1995).ADSCrossRefGoogle Scholar
  23. [24]
    J. Grün, R. Decoste, B.H. Ripin, and J. Gardner (1981), Characteristics of ablation plasma from planar, laser-driven targets. Appl. Phys. Lett. 39(7), pp. 545–547.ADSCrossRefGoogle Scholar
  24. [25]
    F. Cottet and A. Migault, A simple model for the theoretical evaluation of the temperature behind a very strong shock. High Temperatures-High Pressures 16, pp. 665–668 (1985).Google Scholar
  25. [26]
    P.W. Dueweke, A technique for launching intermediate velocity thin plastic sheets. Rev Sci. Inst. 41(4), pp. 539–541 (1970).ADSCrossRefGoogle Scholar
  26. [27]
    A.H. Guenther, D.C. Wunsch, and T.D. Soapes, Acceleration of thin plates by exploding foil techniques, in Exploding Wires (eds. W.G. Chase and H.K. Moore), Plenum Press, N.Y., pp. 279–298 (1962).CrossRefGoogle Scholar
  27. [28]
    P.V. Keller and J.R. Pennings Jr., Exploding foils—The production of plane shock waves and the acceleration of thin plates, in Exploding Wires (eds. W.G. Chase and H.K. Moore), Plenum Press, N.Y., pp. 263–277 (1962).CrossRefGoogle Scholar
  28. [29]
    U. Hornemann and W.F. Müller, Shock-induced deformation twins in clinopyroxene. Neues Jahrb Mineral Monatsh 6, pp. 247–255 (1971).Google Scholar
  29. [30]
    W.F. Müller and U. Hornemann (1969), Shock-induced planar deformation structures in experimentally shock-loaded olivines from chondritic meteorites. Earth Planet. Sci. Lett. 7, pp. 251–264.ADSCrossRefGoogle Scholar
  30. [31]
    B. Ivanov, F. Langenhorst, A. Deutsch, and U. Hornemann, How strong was impact-induced CO2 degassing in the K/T event? Numerical modelling of laboratory experiments, in Catastrophic Events & Mass Extinctions: Impacts and Beyond, (eds. C. Koeberl and K.G. MacLeod), Geol. Soc. Amer. Spec. Paper, (2001) in press.Google Scholar
  31. [32]
    J. Arndt, U. Hornemann, and W.F. Müller, Shock-wave densification of silica glass. Physics and Chemistry of Glasses 12, pp. 1–7 (1971).Google Scholar
  32. [33]
    G.E. Duvall and G.R. Fowles, Shock waves, in High Pressure Physics and Chemistry, Vol. 2 (ed. R.S. Bradley), Academic Press, London and New York: pp 209–291, (1963).Google Scholar
  33. [34]
    M.H. Rice, R.G. McQueen, and J.M. Walsh, Compression of solids by strong shock waves, in Solid State Physics, Vol. 6 (eds. F. Seitz and D. Turnbull), Academic Press, London, pp. 1–63 (1958).Google Scholar
  34. [35]
    F. Langenhorst, A. Deutsch, U. Hornemann, and D. Stöffler, Effect of temperature on shock metamorphism of single crystal quartz. Nature 356, pp. 507–509 (1992).ADSCrossRefGoogle Scholar
  35. [36]
    F. Langenhorst, Shock experiments on pre-heated α-and β-quartz: II. X-ray and TEM investigations. Earth Planet. Sci. Lett. 128, pp. 683–698 (1994).ADSCrossRefGoogle Scholar
  36. [37]
    D. Rubie, Characterising the sample environment in multianvil high-pressure experiments. Phase Transitions 68, pp. 431–451 (1999).CrossRefGoogle Scholar
  37. [38]
    S. Karato and D.C. Rubie, Toward an experimental study of deep mantle rheology: A new multianvil sample assembly for deformation studies under high pressures and temperatures, J. Geophys. Res. 102(B9), pp. 20111–20122 (1997).ADSCrossRefGoogle Scholar
  38. [39]
    M.J. Walter, Y. Thibault, K. Wei, and R.W. Luth, Characterizing experimental pressure and temperature conditions in multi-anvil apparatus. Can. J. Phys. 73, pp. 273–286 (1995).ADSCrossRefGoogle Scholar
  39. [40]
    F. Langenhorst and A. Deutsch, Mineralogy of Astroblemes—Terrestrial Impact craters, Chapter 1.10.5. Minerals in terrestrial impact structures and their characteristic features, in Advanced Mineralogy; Vol. 3 Mineral matter in space, mantle ocean floor, biosphere, environmental management, and jewelry, (ed. A.S. Marfunin), Springer, Berlin, pp 95–119 (1998).Google Scholar
  40. [41]
    M.R. Khan and D.J. Barber, Composition-related microstructures in zinc-bearing carbonate assemblages from Broken Hill, New South Wales. Mineralogy and Petrology 41, pp. 229–245 (1990).ADSCrossRefGoogle Scholar
  41. [42]
    M.G. Kim, U. Dahmen, and A.W. Searcy, Structural transformations in the decomposition of Mg(OH)2 and MgC03. J. Am. Ceram. Soc. 70(3), pp. 146–154 (1987).CrossRefGoogle Scholar
  42. [43]
    R.J. Reeder, Carbonates: Growth and alteration microstructures, in Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (ed. P.R. Buseck), pp. 381–424 (1992).Google Scholar
  43. [44]
    D.J. Barber and H.R. Wenk, Deformation twinning in calcite, dolomite, and other rhombohedral carbonates. Phys. Chem. Minerals 5, pp. 141–165 (1979).ADSCrossRefGoogle Scholar
  44. [45]
    G. Rose, Über die im Kalkspath vorkommenden hohlen Canäle. Abh. Königl. Akad. Wiss. Berlin 23, pp. 57–79 (1868).Google Scholar
  45. [46]
    B. Ivanov and A. Deutsch, The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys. Earth Planet. Int., (2001) submitted.Google Scholar
  46. [47]
    F.J. Turner and L.E. Weiss, Structural Analysis of Metamorphic Tectonites. McGraw Hill, New York, p. 545 (1963).Google Scholar
  47. [48]
    P. Agrinier, A. Deutsch, U. Schärer, I. Martinez, and M. Javoy, On the kinetics of the reaction CO2 with hot CaO during impact events: an experimental study. Lunar and Planetary Science 29, #1217 (CD-ROM) (1998).Google Scholar
  48. [49]
    G. Graup, Carbonate-silicate liquid immiscibility upon impact melting: Ries crater, Germany. Meteoritics & Planetary Science 34, pp. 425–438 (1999).ADSCrossRefGoogle Scholar
  49. [50]
    D.J. Barber and H.R. Wenk (1979b), On geological aspects of calcite microstructure. Tectonophysics 54, pp. 45–60.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • F. Langenhorst
  • M. Boustie
  • A. Deutsch
  • U. Hornemann
  • Ch. Matignon
  • A. Migault
  • J. P. Romain

There are no affiliations available

Personalised recommendations