Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 7))


This chapter presents a study of linear systems of ordinary differential equations:

$$ \dot x = Ax $$

where xR n, A is an n × n matrix and

EquationSource <m:semantics> <m:mrow> <m:mover accent='true'> <m:mi>x</m:mi> <m:mo>&#x02D9;</m:mo> </m:mover> <m:mo>=</m:mo><m:mfrac> <m:mrow> <m:mi>d</m:mi><m:mi>x</m:mi></m:mrow> <m:mrow> <m:mi>d</m:mi><m:mi>t</m:mi></m:mrow> </m:mfrac> <m:mo>=</m:mo><m:mrow><m:mo>[</m:mo> <m:mrow> <m:mtable> <m:mtr> <m:mtd> <m:mrow> <m:mfrac> <m:mrow> <m:mi>d</m:mi><m:msub> <m:mi>x</m:mi> <m:mn>1</m:mn> </m:msub> </m:mrow> <m:mrow> <m:mi>d</m:mi><m:mi>t</m:mi></m:mrow> </m:mfrac> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mo>.</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mo>.</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mo>.</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mrow> <m:mfrac> <m:mrow> <m:mi>d</m:mi><m:msub> <m:mi>x</m:mi> <m:mi>n</m:mi> </m:msub> </m:mrow> <m:mrow> <m:mi>d</m:mi><m:mi>t</m:mi></m:mrow> </m:mfrac> </m:mrow> </m:mtd> </m:mtr> </m:mtable></m:mrow> <m:mo>]</m:mo></m:mrow></m:mrow> </m:semantics> </m:math>]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ \dot x = \frac{{dx}}{{dt}} = \left[ {\begin{array}{*{20}{c}} {\frac{{d{x_1}}}{{dt}}} \\ . \\ . \\ . \\ {\frac{{d{x_n}}}{{dt}}} \end{array}} \right]$$

It is shown that the solution of the linear system (1) together with the initial condition x(0) = x0 is given by

EquationSource<m:math display='block'> <m:mrow> <m:mi>x</m:mi><m:mrow><m:mo>(</m:mo> <m:mi>t</m:mi> <m:mo>)</m:mo></m:mrow><m:mo>=</m:mo><m:msup> <m:mi>e</m:mi> <m:mrow> <m:mi>A</m:mi><m:mi>t</m:mi></m:mrow> </m:msup> <m:msub> <m:mi>x</m:mi> <m:mn>0</m:mn> </m:msub> </m:mrow> </m:math>]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ x\left( t \right) = {e^{At}}{x_0}$$

where e At is an n × n matrix function defined by its Taylor series. A good portion of this chapter is concerned with the computation of the matrix e At in terms of the eigenvalues and eigenvectors of the square matrix A. Throughout this book all vectors will be written as column vectors and A T will denote the transpose of the matrix A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 95.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perko, L. (2001). Linear Systems. In: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol 7. Springer, New York, NY.

Download citation

  • DOI:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6526-9

  • Online ISBN: 978-1-4613-0003-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics