Advertisement

Gas chromatographic determination of nitrogen-containing pesticides using the nitrogen flame ionization detector (N-FID)

  • H. Maier-Bode
  • M. Riedmann
Conference paper
Part of the Residue Reviews book series (RECT, volume 54)

Abstract

The use of gas chromatographic (gle) methods for purposes of identification and quantitation of pesticides1 and their residues within the required accuracy and detection limits is directly related to the development of detectors which are selective and sensitive to the chemical structure, elemental constitution, or functional groups. Among those detectors widely used in routine gle analysis of pesticides are the electron-capture (EC) detector, the Dohrmann microcoulometer, the Coulson conductivity detector, the flame photometric detector, and seyeral different designs of thermionic flame ionization detectors. All of these detectors show selective detection properties. Selective detection facilitates the accomplishment of qualitative and quantitative analysis, particularly at very low sample concentration levels in the presence of concomitant endogenous substances differentiating compounds with similar or the same retention time.

Keywords

Relative Retention Time Background Current Organophosphorus Pesticide Alkali Salt Urea Herbicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anliker, R., E. Beriger, M. Geiger, and K. Schmid: Über die Synthese von Phosphamidon und seinen Abbau in Pflanzen. Helvet. Chimica Acta 44, 1622 (1961).CrossRefGoogle Scholar
  2. Anonymous: Changes in official methods of analysis. Captan. 84th Ann. Meeting, Oct. 12–15, 1970. J. Assoc. Official Anal. Chemists 54, 451 (1971).Google Scholar
  3. Aue, W. A., G. W. Gehrke, R. C. Tindle, D. L. Stalling, and D. D. Ruyle: Application of the alkali flame detector to nitrogen-containing compounds. J. Gas Chromatog. 5, 381 (1967).Google Scholar
  4. Bache, C. A., and D. J. Lisk: Determination of oxidative metabolites of dimethoate and thimet in soil by emission spectroscopic gas chromatography. J. Assoc. Official Anal. Chemists 49, 647 (1966).Google Scholar
  5. Baunok, I., and H. Geissbühler: Specific determination of urea herbicide residues by EC gas chromatography after hydrolysis and iodine derivate formation. Bull. Environ. Contam. Toxicol. 3, 7 (1968).CrossRefGoogle Scholar
  6. Beckman, H., and D. Garber: Recovery of 65 organophosphorus pesticides from Florisil with a new solvent elution system. J. Assoc. Official Anal. Chemists 52, 286 (1969).Google Scholar
  7. Bevenue, A., and J. N. Ogata: Determination of bromacil by gas chromatography. J. Chromatog. 46, 110 (1970).CrossRefGoogle Scholar
  8. Beynon, K. J., and A. N. Wright: The fates of the herbicides chlorthiamid and dichlobenil in relation to residues in crops, soils, and animals. Residue Reviews 43, 23 (1972).Google Scholar
  9. -, L. Davies, and K. Elgar: Analysis of crops and soils for residues of 2,6-dichlorobenzonitrile (dichlobenil) and 2,6-dichlorothiobenzamide (chlorthiamid). II. Results. J. Sci. Food Agr. 17, 156 (1966a).CrossRefGoogle Scholar
  10. - - - and A. N. Wright: Analysis of crops and soils for residues of 2,6-dichlorobenzonitrile (dichlobenil) and 2,6-dichlorothiobenzamide (chlorthiamid). I. Development of method. J. Sci. Food Agr. 17, 151 (1966b).CrossRefGoogle Scholar
  11. Boggs, H. M.: Gas chromatography of dinitro herbicides. J. Assoc. Official Anal. Chemists 49, 772 (1966).Google Scholar
  12. Bonelli, E. J., H. Hartmann, and K. P. Dimick: Gas chromatography retention times and sensitivity data for insecticides and herbicides. J. Agr. Food Chem. 12, 332 (1964).CrossRefGoogle Scholar
  13. Bowman, M. C., and M. Beroza: Gas chromatographic analysis of 3-hydroxy-N-methyl-cis-crotonamide dimethyl phosphate (Azodrin) and 3-hydroxy-N,N-dimethyl-cis-crotonamide dimethyl phosphate (Bidrin). J. Agr. Food Chem. 15, 465 (1967).CrossRefGoogle Scholar
  14. - - Determination of mesurol and five of its metabolites in apples, pears, and corn by gas chromatography. J. Assoc. Official Anal. Chemists 52, 1054 (1969).Google Scholar
  15. - -, and K. R. Hill: Chromatograms of foods for multicomponent residue determinaton of pesticides containing phosphorus and/or sulfur by GLC with flame photometric detection. J. Assoc. Official Anal. Chemists 54, 346 (1971).Google Scholar
  16. Brazhnikov, V. V., M. V. Gur’ev, and K. I. Sakodynsky: Thermionic detectors in gaschromatography. Chromatog. Rev. 12, 1 (1970).CrossRefGoogle Scholar
  17. Burke, J. A., and L. Giuffrida: Investigations of electron capture gas chromatography for the analysis of multiple chlorinated pesticide residues in vegetables. J. Assoc. Official Anal. Chemists 47, 326 (1964).Google Scholar
  18. -, and W. Holswade: A gas chromatographic column for pesticide residue analysis: Retention times and response data. J. Assoc. Official Anal. Chemists 49, 374 (1966).Google Scholar
  19. Ciba-Geigy AG, Basle, Agricultural Division: Personal communication (1970).Google Scholar
  20. Clemons, G. P., and R. E. Menzer: Oxidative metabolism of phosphamidon in rats and a goat. J. Agr. Food Chem. 16, 312 (1968).CrossRefGoogle Scholar
  21. Coffin, D. E.: Oxidative metabolism and persistence of parathion and malathion on field-sprayed lettuce. J. Assoc. Official Anal. Chemists 49, 1018 (1966).Google Scholar
  22. Coulson, D. M.: Electrolytic conductivity detector for gas chromatography. J. Gas Chromatog. 3, 134 (1965).Google Scholar
  23. - Selective detection of nitrogen compounds in electrolytic conductivity gas chromatography. J. Gas Chromatog. 4, 285 (1966 a).Google Scholar
  24. - Electrolytic conductivity detection for gas chromatography. Adv. Chromatog. 3, 197 (1966 b).Google Scholar
  25. Cremer, E.: New selective detectors in gas chromatography. J. Gas Chromatog. 5, 329 (1967).Google Scholar
  26. Deutsche Forschungsgemeinschaft: Rückstandsanalytik von Pflanzenschutzmitteln. Loseblattsammlung. Weinheim/Bergstasse: Verlag Chemie (1972).Google Scholar
  27. Dräger, G.: Gaschromatographische Methode zur Bestimmung von ®Bayrusil-Rückständen in Pflanzenmaterial. Pflanzenschutz-Nachrichten BAYER 22, 318 (1969).Google Scholar
  28. Eberle, D. O., and W. D. Hörmann: Fate of S-[(2-methoxy-5-oxo-Δ2-1,3,4-thia-diazolin-4-yl)-methyl]-O,O-dimethyl phosphorodithioate (Supracide) in field-grown agricultural crops and soil. J. Assoc. Official Anal. Chemists 54, 150 (1971).Google Scholar
  29. -, and D. Novak: Fate of diazinon in field-sprayed agricultural crops, soil, and olive oil. J. Assoc. Official Anal. Chemists 52, 1067 (1969).Google Scholar
  30. Ebing, W.: Gaschromatographischer Rückstandsnachweis von 47 phosphorhaltigen Insektizid-Wirkstoffen nach einem Einheitsverfahren. Pflanzenschutzber. 38, 1 (1968).Google Scholar
  31. - Problem der Rückstandsanalytik von Bioziden aus der Sicht des Umweltschutzes. Deutsche Lebensmittel-Rundschau 69, 39 (1973).Google Scholar
  32. El-Refai, A., and T. L. Hopktns: Parathion absorption, translocation, and conversion to paraoxon in bean plants. J. Agr. Food Chem. 14, 588 (1966).CrossRefGoogle Scholar
  33. Esser, H. O., G. Dupuis, W. Mücke, and P. W. Müller: Metabolism of the insecticide GS 13005. Presented VIth Internat. Congress Plant Prot., Vienna, Aug. 30–Sept. 6 (1967).Google Scholar
  34. Farbwerke Hoechst AG, Analytic Laboratory: Personal communication (1972).Google Scholar
  35. Geissbühler, H., and G. Voss: Metabolism of substituted urea herbicides. Pesticide terminal residues. Presented 1971 IUPAC-Symposium, Tel-Aviv, p. 305. London: Butterworth (1971).Google Scholar
  36. -, K. Kossmann, I. Baunok, and V. F. Boyd: Determination of total residues of chlorphenamidine [N′-(4-chloro-o-tolyl)-N,N-dimethylformamidine] in plant and soil material by eolorimetry and thin-layer and electron capture gas chromatography. J. Agr. Food Chem. 19, 365 (1971).CrossRefGoogle Scholar
  37. Giang, B. Y., and H. F. Beckman: Determination of Bidrin, Azodrin, and their metabolites with the thermionic detector. J. Agr. Food Chem. 16, 899 (1968).CrossRefGoogle Scholar
  38. Gorbach, S., and U. Wagner: Pentachloronitrobenzene residues in potatoes. J. Agr. Food Chem. 15, 654 (1967).CrossRefGoogle Scholar
  39. Graetz, D. A., G. Chesters, and T. C. Daniel: Parathion degradation in lake sediments. J. Water Pollut. Control Fed. 42, R76 (1970).PubMedGoogle Scholar
  40. Guardigli, A., W. Chow, P. M. Martwinski, and M. S. Lefar: Determination of phosalone and its oxygen analog in citrus crops. J. Agr. Food Chem. 19, 742 (1971).CrossRefGoogle Scholar
  41. Gutenmann, W. H., and D. J. Lisk: Gas chromatographic determination of phenolic pesticides and residues. J. Assoc. Official Anal. Chemists 48, 1173 (1965).Google Scholar
  42. Hacskaylo, J., and D. L. Bull: Metabolism of dimethoate in cotton leaves. J. Agr. Food Chem. 11, 464 (1963).CrossRefGoogle Scholar
  43. Hartmann, H.: Phosphorus detector for pesticide analysis. Bull. Environ. Contain. Toxicol. 1, 159 (1966).CrossRefGoogle Scholar
  44. Holden, E. R., W. M. Jones, and M. Beroza: Determination of residues of methyl- and dimethylcarbamate insecticides by gas chromatography of their 2,4-dinitroanilme derivatives. J. Agr. Food Chem. 17, 56 (1969).CrossRefGoogle Scholar
  45. Howard, S. F., and G. Yip: Diazomethane methylation of a mixture of chlorophenoxy acids and dinitrophenols. J. Assoc. Official Anal. Chemists 54, 970 (1971).Google Scholar
  46. Hrivnák, J., and Z. Stota: Gas chromatography of free phenolic pesticides. J. Gas Chromatog. 6, 9 (1968).Google Scholar
  47. Ives, N. F., and L. Giuffrida: Investigation of thermionic detector response for the gas chromatography of P, N, As, and Cl organic compounds. J. Assoc. Official Anal. Chemists 50, 1 (1967).Google Scholar
  48. Janak, J., V. Svojanovsky, and M. Dressler: Analytical performance of an all-glass version of the coupled flame ionization-sodium thermionic detector. Czech. Chem. Commun. 33, 740 (1968).Google Scholar
  49. Jolliffe, V. A., B. E. Day, L. S. Jordan, and J. D. Mann: Method of determining bromacil in soils and plant tissues. J. Agr. Food Chem. 15, 174 (1967).CrossRefGoogle Scholar
  50. Jordan, L. S., W. J. Farmer, J. R. Goodin, and B. E. Day: Nonbiological detoxication of the s-triazine herbicides. Residue Reviews 32, 267 (1970).PubMedGoogle Scholar
  51. Karmen, A.: Specific detection of halogen and phosphorus by flame ionization. Anal. Chem. 36, 1416 (1964).CrossRefGoogle Scholar
  52. -, and L. Giuffrida: Enhancement of the response of the hydrogen flame detector to compounds containing halogens and phosphorus. Nature 201, 1204 (1964).PubMedCrossRefGoogle Scholar
  53. Katz, S. E., and C. A. Fassbender: Chromatographic determination of metobromuron and metabolites in soil. Weed Sci. 16, 401 (1968).Google Scholar
  54. -, and R. F. Strusz: Chromatographic procedure for the determination of Maloran and metabolites in soils. Bull. Environ. Contam. Toxicol. 3, 258 (1968).CrossRefGoogle Scholar
  55. - - Gas chromatographic separation of several urea herbicides and their metabolites. J. Agr. Food Chem. 17, 1409 (1969).CrossRefGoogle Scholar
  56. Kaufman, D. D., and P. C. Kearney: Microbial degradation of s-triazine herbicides. Residue Reviews 32, 235 (1970).PubMedGoogle Scholar
  57. Knuesli, E., D. Berrer, G. DuPuis, and H. Esser: s-Triazines. In P. C. Kearney and D. D. Kaufman (eds.): Degradation of herbicides. New York: Dekker, (1969).Google Scholar
  58. Kossmann, K.: Methoden zur Rückstandsbestimmung von Phenmedipham in Pflanzenmaterial. Weed Res. 10, 340 (1970).CrossRefGoogle Scholar
  59. -, H. Geissbühler, and V. F. Boyd: Specific determination of chlorphenamidine [N′-(4-chloro-o-tolyl)-N,N-dimethylformamidine] and of some potential metabolites in plant material by thin-layer and flame ionization gas chromatography. J. Agr. Food Chem. 19, 360 (1971).CrossRefGoogle Scholar
  60. Krause, Chr., and J. Kirchhoff: Gaschromatographische Bestimmung von Organophosphatrückständen auf Marktproben von Obst und Gemüse. Deutsche Lebensmittel-Rundschau 66, 194 (1970).Google Scholar
  61. Krishna, J. G., H. W. Dorough, and J. E. Casida: Synthesis of N-methylcarbamates via methyl isocyanate-C14 and chromatographic purification. J. Agr. Food Chem. 10, 462 (1962).CrossRefGoogle Scholar
  62. Kuchar, E. J., F. O. Geenty, W. P. Griffith, and R. J. Thomas: Analytical studies of metabolism of Terraclor in beagle dogs, rats, and plants. J. Agr. Food Chem. 17, 1237 (1969).CrossRefGoogle Scholar
  63. Laski, R. R., and R. R. Watts: Gas chromatography of organonitrogen pesticides, using a nitrogen-specific detection system. J. Assoc. Official Anal. Chemists 56, 328 (1973).Google Scholar
  64. Lemperle, E., and H. Strecker: Gas-chromatographische Bestimmung des Wirkstoffrückstandes auf Weintrauben, in Traubenmost und in Wein nach Anwendung von Mycodifol. Z. anal. Chem. 253, 275 (1971).CrossRefGoogle Scholar
  65. Lucier, G. W., and R. E. Menzer: Metabolism of dimethoate in bean plants in relation to its mode of application. J. Agr. Food Chem. 16, 936 (1968).CrossRefGoogle Scholar
  66. - - Nature of oxidative metabolites of dimethoate formed in rats, liver microsomes, and bean plants. J. Agr. Food Chem. 18, 698 (1970).CrossRefGoogle Scholar
  67. Maier-Bode, H.: Herbizide und ihre Rückstände. Stuttgart: Verlag Ulmer (1971).Google Scholar
  68. Martin, H.: Pesticide manual. Basic information on the chemicals used as active components of pesticides, 3rd ed. Brit. Crop. Prot. Council (1972).Google Scholar
  69. Martin, R. L.: Fast and sensitive method for determination of nitrogen. Anal. Chem. 38, 1209 (1966).CrossRefGoogle Scholar
  70. Mattson, A. M., R. A. Kahrs, and R. T. Murphy: Routine quantitative residue determinations of s-[(2-methoxy-5-oxo-Δ2-1,3,4-thiadiazolin-4-yl)methyl] O,O-dimethyl phosphorodithioate (Supracide) and its oxygen analog in forage crops. J. Agr. Food Chem. 17, 565 (1969).CrossRefGoogle Scholar
  71. - - - Quantitative determination of triazine herbicides in soils by chemical analysis. Residue Reviews 32, 371 (1970).PubMedGoogle Scholar
  72. McKellar, R. L.: 2-sec-butyl-4,6-dinitrophenol and 2-amino-6-sec-butyl-4-nitrophenol in milk and cream from cows fed 2-sec-butyl-4,6-dinitrophenol. J. Agr. Food Chem. 19, 758 (1971).CrossRefGoogle Scholar
  73. McKone, C. E.: The determination of some substituted urea herbicide residues in soil by electron-capture gas chromatography. J. Chromatog. 40, 60 (1969).CrossRefGoogle Scholar
  74. -, and R. J. Hance: Estimation of S-2,3,3-trichloroallyl N,N-diisopropylthiolcarbamate (triallate) residues in soil, barley straw, and grain by electron-capture gas chromatography. J. Agr. Food Chem. 15, 935 (1967).CrossRefGoogle Scholar
  75. - - The gas chromatography of some substituted urea herbicides. J. Chromatog. 36, 234 (1968).CrossRefGoogle Scholar
  76. Mendoza, C. E., and J. B. Shields: GLC analysis of Dyrene residues, using Chromosorb W (HP) with OV-17/QF-1 silicone coating. J. Assoc. Official Anal. Chemists 54, 986 (1971).Google Scholar
  77. Menges, R. M., and J. L. Hubhard: Selectivity, movement, and persistence of soil-incorporated herbicides in carrot plantings. Weed Sci. 18, 247 (1970).Google Scholar
  78. Menzer, R. E., and J. E. Casida: Nature of toxic metabolites formed in mammals, insects, and plants from 3-(dimethoxyphosphinyloxy)-N,N-dimethyl-cis-crotonamide and its N-methyl analog. J. Agr. Food Chem. 13, 102 (1965).CrossRefGoogle Scholar
  79. Methratta, T. P., R. W. Montagna, and W. P. Griffith: Determination of Terraclor in crops and soil by electron-capture gas chromatography. J. Agr. Food Chem. 15, 648 (1967).CrossRefGoogle Scholar
  80. Meulemans, K. J., and E. T. Upton: Determination of dichlobenil and its metabolite, 2,6-dichloro-benzoic acid, in agricultural crops, fish, soil, and water. J. Assoc. Official Anal. Chemists 49, 976 (1966).Google Scholar
  81. Miles, J. R. W.: A new colorimetric method for determination of residues of Guthion and Ethyl Guthion and their oxygen analogs. J. Assoc. Official Anal. Chemists 47, 882 (1964).Google Scholar
  82. Neal, R. A.: Metabolism of diethyl 4-nitrophenyl phosphorothioate (parathion) in vitro. Biochem. J. 103, 183 (1967).PubMedGoogle Scholar
  83. O’Brien, R. D.: Toxic phosphorus esters. New York: Academic Press (1960).Google Scholar
  84. Ohling, R. W., E. Thall, and P. H. Oey: General consideration concerning atmospheric aerosol monitoring with the hydrogen flame ionization detector. Anal. Chem. 41, 302 (1969).CrossRefGoogle Scholar
  85. Pease, H. L.: Determination of residues of 3-cyclohexyl-5,6-trimethyleneuracil. J. Sci. Food Agr. 17, 121 (1966).CrossRefGoogle Scholar
  86. Peck, J. M., and K. J. Harkiss: Gas chromatographic analysis of some carbamate derivatives. J. Chromatogr. Sci. 9, 370 (1971).Google Scholar
  87. Pomerantz, I. H., and R. Ross: Captan and structurally related compounds by thin layer and gas-liquid chromatography. J. Assoc. Official Anal. Chemists 51, 1058 (1968).Google Scholar
  88. Renvall, S., and M. Åkerblom: Determination of organophosphoras pesticide residues in fruits and vegetables on the Swedish market from 1964 to 1968. Residue Reviews 34, 1 (1971).PubMedGoogle Scholar
  89. Riedmann, M.: Theoretical and practical aspects of thermionic detection of heteroelements. Presented 4th Internat. Symp. “Advances and Utilization of Chromatography,” Bratislava (1973).Google Scholar
  90. -, and C. B. Euston: New GC detector for phosphorus containing pesticides. Anal. Adv. Hewlett-Packard Co. Summer (1969).Google Scholar
  91. Ruzicka, J., J. Thomson, and B. B. Wheals: The gas-chromatographic examination of organophosphorus pesticides and their oxidation products. J. Chromatog. 30, 92 (1967).CrossRefGoogle Scholar
  92. Schering AG, Berlin, Pflanzenschutzforschung: Personal communication (1970).Google Scholar
  93. Schmidt, K.-J., and I. Hammann: ®Bayrusil, ein neuer insektizider und akarizider Phosphorsäureester. Pflanzenschutz-Nachrichten BAYER 22, 324 (1969).Google Scholar
  94. Smith, A. E.: Estimation of S-2,3-dichlorallyl N,N-diisopropylthiolcarbamate (diallate) residues in soils by electron-capture gas chromatography. J. Agr. Food Chem. 17, 1052 (1969).CrossRefGoogle Scholar
  95. Spengler, D., and B. Hamroll: Trennung und Bestimmung von Carbamat- und Harnstoff-Herbiziden durch Reaktions-Gaschromatographie. J. Chromatog. 49, 205 (1970).CrossRefGoogle Scholar
  96. Storherr, R. W., P. Ott, and R. R. Watts: A general method for organophosphorus pesticide residues in nonfatty foods. J. Assoc. Official Anal. Chemists 54, 513 (1971).Google Scholar
  97. Thornton, J. S., and C. A. Anderson: Determination of residues of Di-Syston and metabolites by thermionic emission flame gas chromatography. J. Agr. Food Chem. 16, 895 (1968).CrossRefGoogle Scholar
  98. Tindle, R. C., C. W. Gehrke, and A. W. Aue: Improved GLC method for s-triazine residue determination. J. Assoc. Official Anal. Chem. 51, 682 (1968).Google Scholar
  99. van Middelem, C. H., and R. E. Wattes: Gas chromatographic and colorimetric measurement of dimethoate residues. J. Agr. Food Chem. 12, 178 (1964).CrossRefGoogle Scholar
  100. Verloop, A.: Fate of the herbicide dichlobenil in plants and soil in relation to its biological activity. Residue Reviews 43, 55 (1972).Google Scholar
  101. Vogeler, K., and H. Goeldner: Untersuchungen über Rückstände nach Anwendung von Euparen an Weintrauben. Schweiz. Z. Obst- und Weinbau 103, 494 (1967).Google Scholar
  102. -, and H. Niessen: Gaschromatographische Bestimmung von Rückständen in Pflanzen nach Anwendung von ®Morestan. Pflanzenschutz-Nachrichten BAYER 20, 530 (1967).Google Scholar
  103. Voss, G., and H. Geissbühler: Methodological aspects of urea herbicides residue analysis. Proc. 2nd Internat. IUPAC-Congress Pesticide Chemistry, Tel-Aviv, 4, 525 (1971).Google Scholar
  104. -, I. Baunock, and H. Geissbühler: Phosphamidon residue methods. Residue Reviews 37, 101 (1971).PubMedGoogle Scholar
  105. Waggoner, T. B.: Metabolism of Nemacur [ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate] and identification of two metabolites in plants. J. Agr. Food Chem. 20, 157 (1972).CrossRefGoogle Scholar
  106. Walter, J. P., M. L. Kerchersid, and M. G. Merkle: The gas chromatographic determination of 4-trifluoromethyl-2,4′-dinitrodiphenyl ether residues in soybeans. J. Agr. Food Chem. 16, 143 (1968).CrossRefGoogle Scholar
  107. Watts, R. R., and R. W. Storherr: Gas chromatography of organophosphorus pesticides: Retention times and response data on three columns. J. Assoc. Official Anal. Chemists 52, 513 (1969).Google Scholar
  108. Wessel, J. R.: Collaborative study of a method for multiple organophosphorus pesticide residues in nonfatty foods. J. Assoc. Official Anal. Chemists 50, 430 (1967).Google Scholar
  109. Westlake, W. E., and F. A. Gunther: Advances in gas chromatographic detectors illustrated from applications to pesticide residue evaluations. Residue Reviews 18, 175 (1967).PubMedGoogle Scholar
  110. Wheeler, L., and A. Strother: Chromatography of N-methylcarbamates in the gaseous phase. J. Chromatog. 45, 362 (1969).CrossRefGoogle Scholar
  111. Williams, R. T.: Detoxication mechanisms. The metabolism and detoxication of drugs, toxic substances and other organic compounds, 2nd ed. London: Chapman & Hall (1959).Google Scholar
  112. Windham, E. S.: Gas chromatographic column for pesticide analysis. J. Assoc. Official Anal. Chemists 52, 1237 (1969).Google Scholar
  113. Wright, F. C., and J. C. Riner: Note on versatility of silicone Dow Corning 11 substrate for gas chromatography of pesticides. J. Assoc. Official Anal. Chemists 52, 879 (1969).Google Scholar
  114. Yip, G., and S. F. Howard: Extraction and cleanup procedure for the gas chromatographic determination of four dinitrophenolic pesticides. J. Assoc. Official Anal. Chemists 51, 24 (1968).Google Scholar
  115. Zielinski, W. L., and L. Fishbein: Gas chromatography of carbamate derivatives. II. N-Substituted carbamates. J. Gas Chromatog. 3, 333 (1965).Google Scholar

Copyright information

© Springer-Verlag New York Inc 1975

Authors and Affiliations

  • H. Maier-Bode
    • 1
  • M. Riedmann
    • 2
  1. 1.Pharmakologisches Institut der RheinischenFriedrich-Wilhelms-Universität BonnRickenbachW. Germany
  2. 2.Hewlett-Packard GmbHBöblingenW. Germany

Personalised recommendations