Canonical Transformation Theory and Generalizations

  • Georgio Eugenio Oscare Giacaglia
Part of the Applied Mathematical Sciences book series (AMS, volume 8)

Abstract

In this chapter we deal with the terminology and basic well known results, which are necessary to the development of the subsequent chapters. It is not the scope of this chapter to describe Hamiltonian Systems and their general properties. They are found in several books and monographs, among which we wish to mention the classics of Birkhoff (1927), Siegel (1956), Wintner (1947), Abraham (1966), Moser (1968). We avoid any and every sophistication in arriving at intrinsic representations and definitions of Hamiltonian systems on manifolds, not because they are not important, but because they are of no essential necessity in what has to follow.

Keywords

Manifold Congo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., 1967, “Foundations of Mechanics”, W. A. Benjamin Inc., Philadelphia.Google Scholar
  2. 2.
    Arnol’d, V. I., 1963, “Small Denominators and Problems Of Stability of Motion in Classical and Celestial Mechanics”, Uspeki Mat. Nauk USSR 18, 91–192.Google Scholar
  3. 3.
    Birkhoff, G. D., 1915, “Proof of Poincaré’s Geometric Theorem”, Trans. Amer. Math. Soc, 14, 14–22.MathSciNetGoogle Scholar
  4. 4.
    — 1915, “The Restricted Problem of Three Bodies”, Rend. Circ. Mat. Palermo, 39, 1–115.CrossRefGoogle Scholar
  5. 5.
    —, 1927, “Dynamical Systems”, Am. Math. Soc. Colloq. Pub., IX, Providence, R. I.Google Scholar
  6. 6.
    Breves, J. A., 1968, “A new proof of the conditions for a canonical transformation”, Seminars, Univ. of São Paulo (in Cel. Mech., 6, No. 1, 1972).Google Scholar
  7. 7.
    Brouwer, D. and Clemence, G. M., 1961, “Methods of Celestial Mechanics”, Academic Press, New York.Google Scholar
  8. 8.
    Brown, E. W., 1931, “Elements of Theory of Resonance”, Rice Inst. Publ. 19, Houston.Google Scholar
  9. 9.
    Burstein, E. L. and Solovev, L. S., 1961, Dokl. Akad. Nauk USSR, 139, 855–858.Google Scholar
  10. 10.
    Campbell, J. A. and Jefferys, W. H., 1970, “Equivalence of the Perturbation Theories of Hori and Deprit”, Cel. Mech., 2, 467.MATHCrossRefGoogle Scholar
  11. 11.
    Cartan, E., 1963, “Elementary Theory of Analytic Functions of One or Several Complex Variables”, Addison-Wesley, Reading, Massachusetts.Google Scholar
  12. 12.
    Cesari, L., 1940, “Sulla Stabilità delle Soluzioni dei Sistemi di Equazioni Differenziali Lineari a Coefficienti Periodici”, Atti Accad. Ital. Mem. Clas. Fis. Mat. e Nat., 11, 633–692.MathSciNetGoogle Scholar
  13. 13.
    —, 1959, “Asymptotic Behavior and Stability Problems in Ordinary Differential Equations”, Springer-Verlag, Berlin (Second Ed., 1963? Acad. Press, New York).MATHGoogle Scholar
  14. 14.
    Danby, J. M. A., 1962, “Fundamentals of Celestial Mechanics”, MacMillan, New York.Google Scholar
  15. 15.
    Darwin, G. H., 1911, “Scientific Papers”, Cambridge Univ. Press, London.Google Scholar
  16. 16.
    Delaunay, C. E., 186O-1867, Mèm. Acad. Sci. Paris, 28, 29 (entire volumes).Google Scholar
  17. 17.
    Deprit, A., 1969, “Canonical Transformations Depending on a Small Parameter”, Cel. Mech., 1, 12–30.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Diliberto, S. P. and Hufford, G., 1956, “Perturbation Theorems for Nonlinear Ordinary Differential Equations”, Ann. Math. Studies 36, 207–236.MathSciNetMATHGoogle Scholar
  19. 19.
    Diliberto, S. P., 1960, “Perturbation Theorems for Periodic Surfaces. I” Rend. Circ. Mat. Palermo, 9, 265–299.MathSciNetCrossRefGoogle Scholar
  20. 19a.
    Diliberto, S. P., 1961 “Perturbation Theorems for Periodic Surfaces II”, Rend. Circ. Mat. Palermo, 10, 111.MathSciNetMATHGoogle Scholar
  21. 20.
    Diliberto, S. P., Kyner, W. T. and Freund, R. F., 1961, “The Application of Periodic Surface Theory to the Study of Satellite Orbits”, Astron. J., 66, 118–127.MathSciNetCrossRefGoogle Scholar
  22. 21.
    Diliberto, S. P., 1967, “New Results on Periodic Surfaces and the Averaging Principle”, U.S.-Japanese Semin. on Diff. Func. Equas., pp. 49–87, W. A. Benjamin, Inc., Philadelphia.Google Scholar
  23. 22.
    Dirac, P. A. M., 1958, “Generalized Hamiltonian Dynamics”, Proceed. Roy. Soc. London, A246, 326–332.MathSciNetCrossRefGoogle Scholar
  24. 23.
    Euler, L., 1772, “Theoria Motus Lunae, Novo Methodo”, 775 pp., Petrop. (in Brown, E. W., “Lunar Theory”, Dover Public, New York, 1960).Google Scholar
  25. 24.
    Gambill, R. A., 1954, “Criteria for Parametric Instability for Linear Differential Systems with Periodic Coefficients”, Riv. Mat. Univ. Parma, 5, 169-181.MathSciNetMATHGoogle Scholar
  26. 25.
    —, 1955, Ibidem, 6, 37–43.MathSciNetMATHGoogle Scholar
  27. 26.
    —, 1956, Ibidem, 6, 311–319.MathSciNetGoogle Scholar
  28. 27.
    — and Hale, J. K., 1956, “Subharmonics and Ultraharmonics Solutions of Weakly Nonlinear Systems”, J. Rat. Mech. Anal., 5, 353–398.MathSciNetMATHGoogle Scholar
  29. 28.
    Giacaglia, G. E. O., 1964, “Notes on von Zeipel’s Method”, GSFC-NASA Publ. X-547-64-161, Greenbelt, Md.Google Scholar
  30. 29.
    —, 1965, “Evaluation of Methods of Integration by Series in Celestial Mechanics”, Ph.D. Dissertation, Yale University, New Haven.Google Scholar
  31. 30.
    Hale, J. K., 1954, “On the boundedness of the solution of linear differential systems with periodic coefficients,” Riv. Mat. Univ. Parma, 5, 137–167.MathSciNetMATHGoogle Scholar
  32. 31.
    —, 1954, “Periodic Solutions of Nonlinear Systems of Differential Equations”, Riv. Mat. Univ. Parma, 5, 281–311.MathSciNetMATHGoogle Scholar
  33. 32.
    —, 1958, “Sufficient Conditions for the Existence of Periodic Solutions of First and Second Order Differential Equations”, J. Math. Mech., 7, 163–172.MathSciNetMATHGoogle Scholar
  34. 33.
    —, 1961, “Integral Manifolds of Perturbed Differential Equations”, Ann. Math., 73, 496–531.Google Scholar
  35. 34.
    Hori, G., 1966, “Theory of General Perturbations with Unspecified Canonical Variables”, Publ. Astron. Soc. Japan, 18, 287–296.Google Scholar
  36. 35.
    —, 1970, “Lie Transformations in Nonhamiltonian Systems”, Lecture Notes, Summer Institute in Orbital Mechanics, The Univ. of Texas at Austin, May 1970.Google Scholar
  37. 36.
    —, 1971, “Theory of General Perturbations for Noncanonical Systems”, Publ. Astron. Soc. Japan, 23, 567–587.Google Scholar
  38. 37.
    Kamel, A. A., 1970, “Perturbations Methods in the Theory of Nonlinear Oscillations”, Cel. Mech., 3, 90–106.MathSciNetMATHCrossRefGoogle Scholar
  39. 38.
    Koibnogorov, N. A., 1954, “General Theory of Dynamical Systems and Classical Mechanics”, Proc. Int. Cong. Math., Amsterdam, 1, 315–333, Noordhoff (1957),Google Scholar
  40. 39.
    Krylov, N. and Bogoliubov, N. N., 1934, “The Applications of Methods of Nonlinear Mechanics to the Theory of Stationary Oscillations”, Publ. Ukranian Acad. Sci., No. 8, Kiev.Google Scholar
  41. 40.
    —, 1947, “Introduction to Nonlinear Mechanics”, Annals. Math. Studies, 11, Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  42. 41.
    Kurth, R., 1959, “Introduction to the Mechanics of the Solar System”, Pergamon Press, New York (Chapt. III, Section 3).MATHGoogle Scholar
  43. 42.
    Kyner, W. T., 1964, “Qualitative Properties of Orbits about an Oblate Planet” Comm. Pure Appl. Math., 17, 227–231.MathSciNetMATHCrossRefGoogle Scholar
  44. 43.
    —, 1967, “Averaging Methods in Celestial Mechanics”, Proc. Intern. Astron. Union Symp., No. 25, Thessaloniki, Greece, 1964. Acad. Press, New York.Google Scholar
  45. 44.
    Leimanis, E., 1965, “The General Problem of Motion of Coupled Rigid Bodies about a Fixed Point”, Springer-Verlag, New York (pp. 121–128).MATHGoogle Scholar
  46. 45.
    Lie, M. S., 1888, “Theorie der Transformationgruppen”, Teubner, Leipzig (vol. 1, I).Google Scholar
  47. 46.
    Lindstedt, A., 1882, “Beitrag zur Integration der Differentialgleichungen der Storungtheorie”, Abh. K. Akad. Wiss. St. Petersburg, 31, No. 4 (See also: 1883, Comptes Rendus Acad. Sci. Paris, 3,Google Scholar
  48. 46a.
    Lindstedt, A., 1884, “Beitrag zur Integration der Differentialgleichungen der Storungtheorie”, Bull. Astron., 1, 302).MathSciNetGoogle Scholar
  49. 47.
    MacMillan, W. D., 1920, “Dynamics of Rigid Bodies”, Dover Publications, New York (pp. 403–413).Google Scholar
  50. 48.
    Merman, G. A., 1961, “Almost Periodic Solutions and the Divergence of Lindstedt’s Series in the Planar Restricted Problem of Three Bodies”, Bull. Inst. Theor. Astron. Leningrad, 8, 5.Google Scholar
  51. 49.
    Mersman, W. A., 1970, “A new algorithm for the Lie Transformation”, Cel. Mech., 3, 81–89.MathSciNetMATHCrossRefGoogle Scholar
  52. 50.
    —, 1970, “A Unified Treatment of Lunar Theory and Artificial Satellite Theory” in “Periodic Orbits, Stability and Resonances”, Ed. G. E. O. Giacaglia, D. Reidel Pub. Co., Dordrecht, Holland.Google Scholar
  53. 51.
    —, 1971, “Explicit Recursive Algorithm for the Construction of Equivalent Canonical Transformations”, Cel. Mech., 3, 384–389.MathSciNetMATHCrossRefGoogle Scholar
  54. 52.
    Miners, W. E., Tapley, B. D. and Powers, W. F., 1967, “The Hamilton-Jacobi Method Applied to the Low-Thrust Trajectory Problem”, Proc. 18th Cong. Intern. Astronaut. Fed., Belgrade, Yugoslavia.Google Scholar
  55. 53.
    Moulton, F. R. et al., 1920, “Periodic Orbits”, Carnegie Inst. Wash. Publ., No. 161, Washington, D. C.MATHGoogle Scholar
  56. 54.
    Moser, J., 1955, “Nonexistence of Integrals for Canonical Systems of Differential Equations”, Comm. Pure Appl. Math., 8, 409–436.MathSciNetMATHCrossRefGoogle Scholar
  57. 55.
    —, 1962, “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. II, 1–20.Google Scholar
  58. 56.
    —, 1968, “Lectures on Hamiltonian Systems”, Mem. Amer. Math. Soc., 81, pp. 1–60.Google Scholar
  59. 57.
    Poincaré, H., 1886, “Sur la Méthode de M. Lindstedt”, Bull. Astron., 3, 57.Google Scholar
  60. 58.
    —, 1892–93–99, “Les Méthodes Nouvelles de la Mécanique Célèste”, (3 vols.) Reprint by Dover Publ., New York, 1957.Google Scholar
  61. 59.
    —, 1909–12, “Leçons de Mécanique Célèste”, Gauthier-Villars, Paris (vol. 2, part 2).MATHGoogle Scholar
  62. 60.
    —, 1912, “Sur un Théorème de Géometrie”, Rend. Circ. Mat. Palermo 33, 375–407.CrossRefGoogle Scholar
  63. 61.
    Poisson, S. D., 1834? “Mémoire sur la Variation des Constantes Arbitraires”, J. École Polyt., 3, 266–344 (See also Ref. 41).Google Scholar
  64. 62.
    Powers, W. F. and Tapley, B. D., 1949, “Canonical Transformation Applications to Optimal Trajectory Analysis”, AIAA Journal, 7, 394–399.CrossRefGoogle Scholar
  65. 63.
    Shniad, H., 1969, “The Equivalence of von Zeipel Mappings and Lie Transforms”, Cel. Mech., 2, 114–120. (For the background and earlier proof of the main theorem in Shniad’s paper see: Lanczos, C, “The Variational Principles of Mechanics”, Univ. of Toronto Press, Toronto, chapt. VII).Google Scholar
  66. 64.
    Siegel, C. L., 1941, “On the Integrals of Canonical Systems”, Ann. Math., 42, 806–822.CrossRefGoogle Scholar
  67. 65.
    —, 1956, “Vorlesungen über Himmelsmechanik”, Springer-Verlag, Berlin.Google Scholar
  68. 66.
    Strömgren, E., (see Ref. 67, pp. 550–555).Google Scholar
  69. 67.
    Szebehely, V., 1967, “Theory of Orbits — The Restricted Problem of Three Bodies”, Acad. Press, New York.Google Scholar
  70. 68.
    Tisserand, F., 1896, “Traité de Mécanique Célèste”, (4 vols.) Gauthier-Villars, Paris, (see also 1868, Thèse de Doctorat, J. de Liouville).Google Scholar
  71. 69.
    Wintner, A., 1941, “The Analytical Foundations of Celestial Mechanics”, Princeton Univ. Press, Princeton, New Jersey.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • Georgio Eugenio Oscare Giacaglia
    • 1
    • 2
  1. 1.University of Sao PauloBrazil
  2. 2.University of Texas at AustinUSA

Personalised recommendations