Advertisement

Experimental ischemia of the brain

  • K.-A. Hossmann

Abstract

Cerebral ischemia as seen by the vascular surgeon generally is the consequence of regional stenosis or occlusion of the main supply vessels of the brain. The pathophysiology of regional ischemia is a very complex one: areas of no-flow or low-flow are surrounded by regions of reactive hyperemia, causing different degrees of ischemic cell damage. Changes in tissue pH and shifts in extracellular ions, cell swelling, and aggregation of blood particles are related to microcirculatory abnormalities which may vary considerably from one experiment to the other. It is, of course, possible to empirically describe these changes, and important information has been obtained by various authors using the experimental model of middle cerebral artery occlusion.(7,11,32) However, for the understanding of basic pathophysiologic mechanisms related to ischemia, interruption of the blood supply to the total brain has certain advantages. With such an approach reproducible ischemic lesions can be produced which are uniform in all parts of the brain and which allow standardization of the experimental situation.

Keywords

Middle Cerebral Artery Occlusion Reactive Hyperemia Monkey Brain Electrical Excitability Experimental Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames III A, Wright RL, Kowada M, Thurston JM, Majno G: Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437, 1968PubMedGoogle Scholar
  2. 2.
    Bito LZ, Myers RE: On the physiological response of the cerebral cortex to acute stress (reversible asphyxia). J Physiol 221: 349, 1972PubMedGoogle Scholar
  3. 3.
    Brierly JB, Meldrum BS, Brown AW: Threshold and neuropathology of cerebral anoxic-ischemic cell change. Arch Neurol 29: 367, 1973Google Scholar
  4. 4.
    Brown RM, Carlson A, Ljunggren B, Siesjö BK, Snider SR: Effect of ischemia on monoamine metabolism in the brain. Acta Physiol Scand 90: 789, 1974PubMedCrossRefGoogle Scholar
  5. 5.
    Cantu RC: Factors influencing postischemic cerebral vascular obstruction. Surg Forum 20: 426, 1969PubMedGoogle Scholar
  6. 6.
    Cohen PJ: The metabolic function of oxygen and biochemical lesions of hypoxia. Anesthesiology 37: 148, 1972PubMedCrossRefGoogle Scholar
  7. 7.
    Crowell RM, Olsson Y, Klatzo I, Ommaya A: Temporary occlusion of the middle cerebral artery in the monkey: Clinical and pathological observations. Stroke 1: 439, 1970PubMedCrossRefGoogle Scholar
  8. 8.
    Drewes LR, Gilboe DD: Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery. J Biol Chem 248: 2489, 1973PubMedGoogle Scholar
  9. 9.
    Fischer EG, Ames III A: Studies on mechanisms of impairment of cerebral circulation following ischemia: Effect of hemodilution and perfusion pressure. Stroke 3: 538, 1972PubMedCrossRefGoogle Scholar
  10. 10.
    Folbergrovä J, Ljunggren B, Norberg K, Siesjö BK: Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res 80: 265, 1974PubMedCrossRefGoogle Scholar
  11. 11.
    Hayakawa T, Waltz AG: Immediate effects of cerebral ischemia— evolution and resolution of neurological deficits after experimental occlusion of one middle cerebral artery in conscious cats. Stroke 6: 321, 1975PubMedCrossRefGoogle Scholar
  12. 12.
    Hirsch H, Euler KH, Schneider M: Über die Erholung und Wiederbelebung des Gehirns nach Ischämie bei Normothermie. Pfluegers Arch 265: 281, 1957CrossRefGoogle Scholar
  13. 13.
    Hossmann, K-A: Cortical steady potential, impedance and excitability changes during and after total ischemia of cat brain. Exp Neurol 32: 163, 1971PubMedCrossRefGoogle Scholar
  14. 14.
    Hossmann K-A, Lechtape-Grüter H, Hossmann V: The role of cerebral blood flow for recovery of the brain after prolonged ischemia. Z Neurol 204: 281, 1973PubMedCrossRefGoogle Scholar
  15. 15.
    Hossmann K-A, Sakaki S, Kimoto K: Cerebral uptake of glucose and oxygen in the cat brain after prolonged ischemia. Stroke 7: 301, 1976CrossRefGoogle Scholar
  16. 16.
    Hossman K-A, Sakaki S, Zimmermann V: Cation activities in reversible ischemia of the cat brain. Stroke 8: 77, 1977CrossRefGoogle Scholar
  17. 17.
    Hossmann K-A, Sato K: Effect of ischaemia on the function of the sensorimotor cortex in cat. Electroencephalogr Clin Neurophysiol 30: 535, 1971PubMedCrossRefGoogle Scholar
  18. 18.
    Hossmann K-A, Takagi S: Osmolality of brain in cerebral ischemia. Exp Neurol 51: 124, 1976CrossRefGoogle Scholar
  19. 19.
    Hossmann K-A, Takagi S, Sakaki S: Vital microscopy of pial arteries after prolonged cerebral ischemia. Drug Res 26: 1233, 1976Google Scholar
  20. 20.
    Hossmann K-A, Zimmermann V: Resuscitation of the monkey brain after 1 hour complete ischemia. I. Physiological and morphological observations. Brain Res 81: 59, 1974PubMedCrossRefGoogle Scholar
  21. 21.
    Kleihues P, Hossmann K-A, Pegg AE, Kobayashi K, Zimmermann V: Resuscitation of the monkey brain after 1 hour complete ischemia. III. Indications of metabolic recovery. Brain Res 95: 61, 1975PubMedCrossRefGoogle Scholar
  22. 22.
    Kleihues P, Kobayashi K, Hossmann K-A: Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J Neurochem 23: 417, 1974PubMedCrossRefGoogle Scholar
  23. 23.
    Kobayashi K, Kawakami S, Hossmann K-A, Kleihues P: Free amino acids in the cat brain during cerebral ischemia and subsequent recirculation. In Harper et al. (eds): Blood Flow and Metabolism in the Brain. Edinburgh, 1975, Churchill Livingstone, pp. 10.3–10.7Google Scholar
  24. 24.
    Lechtape-Griiter et al. (unpublished results)Google Scholar
  25. 25.
    Ljunggren B, Schutz H, Siesjo BK: Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res 73: 277, 1974PubMedCrossRefGoogle Scholar
  26. 26.
    Lowry OH, Passonneau JV, Hasselberger FX, Schultz DW: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239: 18, 1964PubMedGoogle Scholar
  27. 27.
    Marshall LF, Durity F, Lounsbury R, Graham DI, Welsh F, Langfitt TW: Experimental cerebral oligemia and ischemia produced by intracranial hypertension. 1. Pathophysiology, electroencephalography. J Neurosurg 43: 308, 1975PubMedCrossRefGoogle Scholar
  28. 28.
    Meyer JS, Teraura T, Marx P, Hashi K, Sakamoto K: Brain swelling due to experimental cerebral infarction. Changes in vasomotor capacitance and effects of intravenous glycerol. Brain 95: 833, 1972PubMedCrossRefGoogle Scholar
  29. 29.
    Negovskii VA: Resuscitation and Artificial Hyperthermia. New York, Consultants Bureau, 1962Google Scholar
  30. 30.
    Nemoto E, Gleyaert A, Stezoski W, Moossy J, Rao R, Safar P: Post-ischemic encephalopathy (PIE): A long-term monkey model for therapy evaluation. Fed Proc Fed Am Soc Exp 34: 384, 1975Google Scholar
  31. 31.
    Snyder JV, Nemoto EM, Carroll RG, Safar P: Global ischemia in dogs: Intracranial pressures, brain blood flow and metabolism. Stroke 6: 21, 1975PubMedCrossRefGoogle Scholar
  32. 32.
    Symon L, Dorsch NWC, Crockard HA: The production and clinical features of a chronic stroke model in experimental primates. Stroke 6: 476, 1975PubMedCrossRefGoogle Scholar
  33. 33.
    Zimmermann V, Hossmann K-A: Resuscitation of the monkey brain after one hour’s complete ischemia. II. Brain water and electrolytes. Brain Res 85: 1, 1975PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • K.-A. Hossmann

There are no affiliations available

Personalised recommendations