Some Contributions of Snails to the Development of Ecological Genetics

Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


It has been suggested that the British school of ecological genetics sprang from an upper-middle-class fascination with snails and butterflies (Lewontin, 1974). My task, in the following account, is to argue that, for the molluscs at least, this fascination has a basis in scientific logic.


Land Snail Chiasma Frequency Area Effect Random Genetic Drift Colour Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J.A.: Apostatic selection: The responses of wild passerines to artificial prey. Ph.D. Thesis, University of Edinburgh. (1972a).Google Scholar
  2. Allen, J.A.: Evidence for stabilizing and apostatic selection by wild blackbirds. Nature 237:348–349. (1972b).PubMedCrossRefGoogle Scholar
  3. Allen, J.A.: Further evidence for apostatic selection by wild passerine birds: Training experiments. Heredity 33:361–372. (1974).PubMedCrossRefGoogle Scholar
  4. Allen, J.A.: Further evidence for apostatic selection by wild passerine birds, 9:1 experiments. Heredity 36:173–180. (1976).PubMedCrossRefGoogle Scholar
  5. Allen, J.A., Clarke, B.: Evidence for apostatic selection by wild passerines. Nature 20:501–502. (1968).CrossRefGoogle Scholar
  6. Arnold, R.W.: Factors affecting gene-frequencies in British and continental populations of Cepaea. Ph.D. Thesis, University of Oxford. (1966).Google Scholar
  7. Bantock, C.R.: Localization of chiasmata in Cepaea nemovalis L. Heredity 29:213–221. (1972).CrossRefGoogle Scholar
  8. Barker, J.F.: Polymorphism in West African snails. Heredity 23: 81–98. (1968).PubMedCrossRefGoogle Scholar
  9. Barker, J.F.: Polymorphism in a West African snail. Amer. Natur. 103:259–266. (1969).CrossRefGoogle Scholar
  10. Brussard, P.F.: Geographic variation in North American colonies of Cepaea nemovalis. Evolution 29:402–410. (1975).CrossRefGoogle Scholar
  11. Brussard, P.F., McCracken, G.F.: Allozymic variation in a North American colony of Cepaea nemovalis. Heredity 33:98–101. (1974)CrossRefGoogle Scholar
  12. Cain, A.J.: Studies onCepaea. V. Sand-dune populations of Cepaeanemovalis (L.). Phil. Trans. R. Soc. Ser. B 253:499–517. (1968)Google Scholar
  13. Cain, A.J., Currey, J.D.: Area effects in Cepaea. Phil. Trans. R. Soc. Ser. B 246:1–81. (1963).CrossRefGoogle Scholar
  14. Cain, A.J., Currey, J.D.: Studies onCepaea. III. Ecogenetics of a population of Cepaea nemovalis (L.) subject to strong area effects. Phil. Trans. R. Soc. Ser. B 253: 447–482. (1968).CrossRefGoogle Scholar
  15. Cain, A.J., Sheppard, P.M.: Selection in the polymorphic land snail Cepaea nemovalis. Heredity 4:275–294. (1950).PubMedCrossRefGoogle Scholar
  16. Cain, A.J., Sheppard, P.M.: Natural selection in Cepaea. Genetics 39:89–116. (1954).PubMedGoogle Scholar
  17. Carter, M.A.: Selection in mixed colonies of Cepaea nemovalis and Cepaea hovtensis. Heredity 22:111–139. (1967).CrossRefGoogle Scholar
  18. Carter, M.A.: Thrush predation of an experimental population of the snail Cepaea nemovalis (L.). Proc. Linn. Soc. Lond. 179:241–249. (1968a).CrossRefGoogle Scholar
  19. Carter, M.A.: Studies onCepaea. II. Area effects and visual selection in Cepaea nemovalis (L.) and Cepaea hovtensis. Phil. Trans. R. Soc. Ser. B 253:397–446. (1968b).CrossRefGoogle Scholar
  20. Clarke, C.A., Sheppard, P.M.: Further studies on the genetics of the mimetic butterfly Papilio memnon L. Phil. Trans. R. Soc. Ser. B 263:35–70. (1972).CrossRefGoogle Scholar
  21. Clarke, B.: Divergent effects of natural selection on two closely-related polymorphic snails. Heredity 14:423–443. (1960).CrossRefGoogle Scholar
  22. Clarke, B.: Some factors affecting shell colour polymorphism in Cepaea. Ph.D. Thesis, University of Oxford. (1961).Google Scholar
  23. Clarke, B.: Balanced polymorphism and the diversity of sympatric species. In Taxonomy and Geography, (ed. D. Nichols). Oxford: Systematic Association, 1962a.Google Scholar
  24. Clarke, B.: Natural selection in mixed populations of two polymorphic snails. Heredity 17:319–345. (1962b).CrossRefGoogle Scholar
  25. Clarke, B.: The evolution of morph-ratio clines. Amer. Natur. 100: 389–402. (1966).CrossRefGoogle Scholar
  26. Clarke, B.: Balanced polymorphism and regional differentiation in land snails. In Evolution and Environment. (ed. E.T. Drake). New Haven: Yale University Press, 1968.Google Scholar
  27. Clarke, B.: The evidence for apostatic selection. Heredity 24:347–352. (1969).PubMedCrossRefGoogle Scholar
  28. Clarke, B.: The contribution of ecological genetics to evolutionary theory: Detecting the direct effects of natural selection on particular polymorphic loci. Genetics (1975a).Google Scholar
  29. Clarke, B.: Frequency-dependent and density-dependent natural selection. In The Role of Natural Selection in Human Evolution, (ed. F.M. Salzano). Amsterdam: North-Holland Publ. Co., 1975b.Google Scholar
  30. Clarke, B.: The ecological genetics of host parasite relationships. In Genetic Aspects of Host-Parasite Relationships. (ed. A.E.R. Taylor and R. Muller). Oxford: Blackwell Scientific Publications, 1976.Google Scholar
  31. Clarke, B., Arthur, W., Horsley, D.T., Parkin, D.T.: Genetic variation and natural selection in pulmonate molluscs. In The Pulmonates, Vol. 2. (ed. J. Peake). New York: Academic Press, 1978.Google Scholar
  32. Clarke, B., Murray, J.: Ecological genetics and speciation in land snails of the genus Partula. Biol. J. Linn. Soc. 1:31–42. (1969).CrossRefGoogle Scholar
  33. Clarke, B., Murray, J.: Polymorphism in a Polynesian land snail, Partula suturalis vexillum. In Ecological Genetics and Evolution, (ed. E.R. Creed). Oxford: Blackwell, 1971.Google Scholar
  34. Cook, L.M., King, J.M.B.: Some data on the genetics of shell-character polymorphism in the snail Arianta arbustorum. Genetics 53:415–425. (1966).PubMedGoogle Scholar
  35. Cook, L.M., Miller, P.: Density-dependent selection on polymorphic prey - some data. Amer. Natur. 111:594–598. (1977).CrossRefGoogle Scholar
  36. Croze, H.T.: Searching images in carrion crows. Z. Tierpsychol. 5: 1–85. (1970).Google Scholar
  37. Diver, C.: Mollusc genetics. Proc. VI Int. Congr. Genet. (Ithaca) 2: 236–239. (1932).Google Scholar
  38. Diver, C.: Aspects of the study of variation in snails. J. Conch. 21: 91–141. (1939).Google Scholar
  39. Endler, J.A.: Geographic Variation, Speciation and Clines. Princeton: Princeton University Press, 19 77.Google Scholar
  40. Ford, E.B.: Ecological Genetics. London: Methuen, 1975.Google Scholar
  41. Gibb, J.A.: L. Tinbergen’s hypothesis on the role of specific search images. Ibis 104:106–111. (1962).CrossRefGoogle Scholar
  42. Goodhart, C.B.: “Area effects” and non-adaptive variation between populations of Cepaea (Mollusca). Heredity 113: 459–465. (1963).CrossRefGoogle Scholar
  43. Haldane, J.B.S.: Disease and Evolution. La Ricerca Scientifica Suppl. 19:68–76. (1949).Google Scholar
  44. Harvey, P.H., Birley, N., Blackstock, T.H.: The effect of experience on the selective behaviour of song thrushes feeding on artificial populations of Cepaea (Held.). Genetica 45:211–216. (1975).CrossRefGoogle Scholar
  45. Heath, D.J.: Colour, sunlight and internal temperatures in the land-snail Cepaea nemovalis. Oecologia.19: 29–38. (1975).CrossRefGoogle Scholar
  46. Horsley, D.T.: The role of avian predators in maintaining colour polymorphism. Ph.D. Thesis, University of Nottingham. (1978).Google Scholar
  47. Johnson, M.S.: Allozymes and area effects on the western Berkshire Downs. Heredity 36:105–121. (1976).CrossRefGoogle Scholar
  48. Johnson, M.S., Clarke, B., Murray, J.: Genetic variation and reproductive isolation in Pavtula. Evolution 31:116–126. (1977).CrossRefGoogle Scholar
  49. Johnson, W.E., Carson, H.L., Kaneshiro, K.Y., Steiner, W.W.M., Cooper, M.M.: Genetic variation in Hawaiian Dvosophila. II. Allozymic differentiation in theD. planitibia subgroups. In Isozymes IV. (ed. C.L. Markert). New York: Academic Press, 1975.Google Scholar
  50. Jones, J.S.: Ecological genetics and natural selection in molluscs. Science 182:546–552. (1973).PubMedCrossRefGoogle Scholar
  51. Jones, J.S., Briscoe, D.A., Clarke, B.: Natural selection on the polymorphic snail Hygvomia stviolata. Heredity 33:102–106. (1974).CrossRefGoogle Scholar
  52. Jones, J.S., Leith, B.H., Rawlings, P.: Polymorphism in Cepaea - a problem with too many solutions? Ann. Rev. Ecol. Syst. 8:109–143. (1977).CrossRefGoogle Scholar
  53. King, M-C., Wilson, A.C.: Evolution at two levels in humans and chimpanzees. Science 188:107–116. (1975).PubMedCrossRefGoogle Scholar
  54. Kimura, M.: A model of a genetic system which leads to closer linkage by natural selection. Evolution 10:278–287. (1956).CrossRefGoogle Scholar
  55. Komai, T., Emura, S.: A study of population genetics on the polymorphic land snail Bvadybaena similavis. Evolution 9: 400–418. (1955).CrossRefGoogle Scholar
  56. Lamotte, M.: Recherches sur la structure génétique des populations naturelles de Cepaea nemovalis (L.). Bull. Biol. Fr. Belg. Suppl. 35:1–239. (1951).Google Scholar
  57. Lamotte, M.: Polymorphism of natural populations of Cepaea nemovalis. Cold Spring Harb. Symp. Quant. Biol. 24:65–84. (1959).PubMedGoogle Scholar
  58. Lang, A.: Uber die Bastarde von Helix hovtensis Mueller und H. nemovalis L. Festschr. Univ. Jena. 1908:1–120. (1908).Google Scholar
  59. Lewis, G.: Polymorphism in the shell characters of certain helicid molluscs. Ph.D. Thesis, University of Oxford. (1968).Google Scholar
  60. Lewis, G.: Polymorphism and selection in Coehlieella acuta. Phil. Trans. R. Soc. Ser. b 276:399–451. (1977).CrossRefGoogle Scholar
  61. Lewontin, R.C.: The Genetic Basis of Evolutionary Change. New York: Columbia University Press, 1974.Google Scholar
  62. Manly, B.F.J., Miller, P., Cook, L.M.: Analysis of a selective prédation experiment. Amer. Natur. 106: 719–736. (1972).CrossRefGoogle Scholar
  63. Maskell, M., Parkin, D.T., Verspoor, E.: Apostatic selection by sticklebacks upon a dimorphic prey. Heredity 39,: 83–89. (1977).CrossRefGoogle Scholar
  64. Mayr, E., Rosen, C.E.: Geographic variation and hybridisation in populations of Bahama snails (Cevion). Amer. Mus. Novit. 1806: 1–48. (1956).Google Scholar
  65. Murdoch, W.W.: Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39:335–354. (1969).CrossRefGoogle Scholar
  66. Murray, J.: Factors affecting gene frequencies in some populations of Cepaea. Ph.D. Thesis, University of Oxford. (1962).Google Scholar
  67. Murray, J.: The genetics of the Mollusca. In Handbook!, of Genetics, (ed. J.C. King). New York: Academic Press, 19 75.Google Scholar
  68. Murray, J., Clarke, B.: Partial reproductive isolation in the genus Pavtula (Gastropoda) on Moorea. Evolution 22: 684–698. (1968).Google Scholar
  69. Murray, J., Clarke, B.: Supergenes in polymorphic land snails. I. Pavtula taeniata. Heredity 37: 253–269. (1976a).PubMedCrossRefGoogle Scholar
  70. Murray, J., Clarke, B.: Supergenes in polymorphic land snails II. Pavtula sutuvalis. Heredity 37:271–282. (1976b).PubMedCrossRefGoogle Scholar
  71. Nabours, R.K.: The genetics of the Tettigidae (Grouse Locusts). Bibliograph. Genet. 5:27–104. (1929).Google Scholar
  72. Nabours, R.K., Larson, I., Hertwig, N.: Inheritance of color patterns in the grouse locust Aovydium avenosum Burmeister (Tettigidae). Genetics 18:159–171. (1933).PubMedGoogle Scholar
  73. Nei, M.: Genetic distance between populations. Amer. Natur. 106: 283–292. (1972).CrossRefGoogle Scholar
  74. Parkin, D.T.: Visual selection in the land snail Avianta avbustovum. Heredity 26:35–47. (1971).CrossRefGoogle Scholar
  75. Price, D.J.: Variation in chiasma frequency in Cepaea nemovalis. Heredity 32:211–218. (1974).PubMedCrossRefGoogle Scholar
  76. Price, D.J.: Chiasma frequency variation with altitude in Cepaea hovtensis (Mull.). Heredity 15:221–229. (1975a).CrossRefGoogle Scholar
  77. Price, D.J.: Position and frequency distribution of chiasmata in Cepaea nemovalis (L.). Caryologia 28:261–268. (1975b).Google Scholar
  78. Price, D.J., Bantock, C.R.: Marginal populations of Cepaea nemovalis (L.) on the Brendon Hills, England. II. Variation in chiasma frequency. Evolution 29:278–286. (1975).CrossRefGoogle Scholar
  79. Richardson, A.M.M.: Differential climatic selection in natural populations of land snail Cepaea nemovalis. Nature 247:572–573. (1974).CrossRefGoogle Scholar
  80. Rimmer, R.: Land and Freshwater Shells of the British Isles. Edinburgh: John Grant, 1907.Google Scholar
  81. Sheppard, P.M.: Fluctuations in the selective value of certain phenotypes in the polymorphic land snail C. nemovalis. Heredity 5:125–134. (1951).PubMedCrossRefGoogle Scholar
  82. Sheppard, P.M.: The evolution of mimicry; a problem in ecology and genetics. Cold Spring Harbor Symp. Ouant. Biol. 24:131–140. (1959).Google Scholar
  83. Soane, I.D., Clarke, B.: Evidence for apostatic selection by predators using olfactory cues. Nature 241:62–64. (1973).CrossRefGoogle Scholar
  84. Tinbergen, L.: The natural control of insects in pinewoods. Factors influencing the intensity of predation by song birds. Arch. Neerl. Zool. 13:265–343. (1960).CrossRefGoogle Scholar
  85. Turner, B.J.: Genetic divergence of Death Valley pupfish species: Biochemical versus morphological evidence. Evolution 28:281–294, (1974).CrossRefGoogle Scholar
  86. Wolda, H.: Natural populations of the polymorphic land snail Cepaea nemovalis (L.). Arch. Neerl. Zool. 15:381–471. (1963).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

There are no affiliations available

Personalised recommendations