Ecological Parameters and Speciation in Field Crickets

  • R. G. Harrison
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


The study of animal speciation has traditionally focused on spatial relationships among diverging populations. The widely accepted model of allopatric speciation (Mayr, 1963a; Dobzhansky, 1970) suggests that new species arise in geographically isolated populations through the gradual accumulation of genetic differences. Mayr (1963a) contends that geographic speciation is “the almost exclusive mode of speciation among animals” (p. 481). However, detailed ecological, behavioral, and cytogenetic studies of a variety of insect taxa provide evidence that other modes of speciation commonly occur (see White, 1974; Bush, 1975a for reviews). The evolution of reproductive isolation may often proceed rapidly and involve changes at relatively few genetic loci. Intrinsic, as well as extrinsic, barriers to gene flow are potentially important in the speciation process.


European Corn Borer Blue Ridge Calling Song Field Cricket Temporal Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R.D.: The taxonomy of the field crickets of the eastern United States (Orthoptera: Gryllidae. Ann. Ent. Soc. Amer. 50:584–602. (1957).Google Scholar
  2. Alexander, R.D.: The role of behavioral study in cricket classification. Syst. Zool. 11:53–72. (1962).CrossRefGoogle Scholar
  3. Alexander, R.D.: Animal species, evolution, and geographic isolation Syst. Zool. 12:202–204. (1963).CrossRefGoogle Scholar
  4. Alexander, R.D.: Acoustical communication in arthropods. Ann. Rev. Ent. 1:495–526. (1967).CrossRefGoogle Scholar
  5. Alexander, R.D.: Life cycle origins, speciation, and related phenomena in crickets. Quart. Rev. Biol. 43:1–41. (1968).PubMedCrossRefGoogle Scholar
  6. Alexander, R.D., Bigelow, R.S.: Allochronic speciation in field crickets and a new species, Acheta veletis. Evolution 14:334–346. (1960).CrossRefGoogle Scholar
  7. Alexander, R.D., Meral, G.: Seasonal and daily chirping cycles in the northern spring and fall crickets, Gvyllus veletis and G. pennsylvanious. Ohio J. Sci. 67: 200–209. (1967).Google Scholar
  8. Alexander, R.D., Walker, T.J.: Two introduced field crickets new to the eastern United States (Orthoptera:Gryllidae). Ann. Ent. Soc Amer. 55:90–94. (1962).Google Scholar
  9. Beck, S.D., Apple, J.W.: Effects of temperature and photoperiod on voltinism of geographic populations of the European Corn Borer, Pyrausta nubilalis. J. Econ. Ent. 54:550–558. (1961).Google Scholar
  10. Bigelow, R.S.: Evolution in the field cricket, Acheta assimilis Fab. Can. J. Zool. 36:139–151. (1958).CrossRefGoogle Scholar
  11. Bigelow, R.S.: Interspecific hybrids and speciation in the genus Acheta (Orthoptera:Gryllidae). Can. J. Zool. 38:509–524. (1960a).CrossRefGoogle Scholar
  12. Bigelow, R.S.: Developmental rates and diapause in Acheta pennsylvan cus (Burmeister) and Acheta veletis (Alexander and Bigelow) (Orthoptera:Gryllidae). Can. J. Zool. 38:973–988. (1960b).CrossRefGoogle Scholar
  13. Bigelow, R.S.: Factors affecting developmental rates and diapause in field crickets. Evolution 16:396–406. (1962).CrossRefGoogle Scholar
  14. Bigelow, R.S., Cochaux, S.A.: Intersterility and diapause differences between geographic populations of Teleogvyllus eommodus (Walker) (Orthoptera:Gryllidae). Aust. J. Zool. 10:300–306. (1962).CrossRefGoogle Scholar
  15. Bush, G.L.: Modes of animal speciation. Ann. Rev. Ecol. Syst. 6: 339–364. (1975a).CrossRefGoogle Scholar
  16. Bush, G.L.: Sympatric speciation in phytophagous parasitic insects. In Evolutionary Strategies of Parasitic Insects and Mites (ed. P.W. Price). New York: Plenum, 1975b, pp. 187–206.Google Scholar
  17. Cade, W.: Acoustically orienting parasitoids: Fly phonotaxis to cricket song. Science 190:1312–1313. (1975).Google Scholar
  18. Cantrail, I.J.: The ecology of the Orthoptera and Dermaptera of the George Reserve. Misc. Publ. Mus. Zool., U. of Mich. No. 54: 1–182. (1943).Google Scholar
  19. Chopard, L.: Faune de France. Orthoptères et Dermaptères. Paris: Paul Lechevalier, 1922.Google Scholar
  20. Cousin, G.: Hybridations interspécifiques entre Gryllides et considérations sur l’évolution du groupe. Proc. X Int. Cong. Ent. 2: 881–897. (1958).Google Scholar
  21. Criddle, N.: Field crickets in Manitoba. Can. Ent. 52:79–94. (1925).CrossRefGoogle Scholar
  22. Danilevskii, A.S.: Photoperiodism and Seasonal Development of Insects. London: Oliver and Boyd, 1965.Google Scholar
  23. Dobzhansky, T.: Genetics of the Evolutionary Process. New York: Columbia University Press, 1970.Google Scholar
  24. Farris, J.S.: Estimating phylogenetic trees from distance matrices. Amer. Natur. 106:645–667. (1972).CrossRefGoogle Scholar
  25. Finot, A.: Les Orthoptères de la France. Paris: F. Deyrolle, 1883.Google Scholar
  26. Folsom, J.W., Woke, P.A.: The field cricket in relation to the cotton plant in Louisiana. USDA Tech. Bull. 642:1–28. (1939).Google Scholar
  27. Fontana, P.G., Hogan, T.W.: Cytogenetic and hybridization studies of geographic populations of Teleogvyllus eommodus (Walker) and T. oeeanieus (Le Guillou) (Orthoptera:Gryllidae). Aust. J. Zool. 17:13–35. (1969).CrossRefGoogle Scholar
  28. Fulton, B.B.: Speciation in the field cricket. Evolution 6:283- 295. (1952).CrossRefGoogle Scholar
  29. Grellet, P.: Cinétique du développement embryonnaire des Gryllides. Bull. Biol. France Belg. 95:615–643. (1961).Google Scholar
  30. Harper, P.P., Pilon, J.G.: Annual patterns of emergence of some Quebec stoneflies (Insecta:Plecoptera). Can. J. Zool. 48: 681- 694. (1970).CrossRefGoogle Scholar
  31. Harrison, R.G.: Patterns of variation and genetic differentiation in closely related species: The field crickets of eastern North America. Ph.D. Thesis, Cornell University.(1977).Google Scholar
  32. Hill, K.G., Loftus-Hills, J.J., Gartside, D.F.: Premating isolation between the Australian field crickets Teleogvyllus eommodus andT. oeeanieus (Orthoptera:Gryllidae). Aust. J. Zool. 20: 153–163. (1972).CrossRefGoogle Scholar
  33. Hogan, T.W.: Some diapause characteristics and interfertility of three geographic populations ofTeleogvyllus eommodus (Walker) (Orthoptera:Gryllidae). Aust. J. Zool. 13:455–459. (1965).CrossRefGoogle Scholar
  34. Hoy, R.R., Hahn, J., Paul, R.C.: Hybrid cricket auditory behavior: Evidence for genetic coupling in animal communication. Science 1915: 82–84. (1977).CrossRefGoogle Scholar
  35. Hynes, H.B.N.: Biology of Plecoptera. Ann. Rev. Ent. 21:135–154. (1976).CrossRefGoogle Scholar
  36. Knerer, G., Atwood, C.E.: Diprionid sawflies: Polymorphism and speciation. Science 179:1090–1099. (1973).PubMedCrossRefGoogle Scholar
  37. Lees, A.D.: The Physiology of Diapause in Arthropods. Cambridge: Cambridge University Press, 1955.Google Scholar
  38. Leroy, Y.: Etude du chant de deux espèces de Grillons et de leur hybride(Gvyllus oommodus Walker, Gvyllus oceanicus Le Guillou, Orthoptères). C.R. Acad. Sci. 256:268–270. (1963).Google Scholar
  39. Leroy, Y.: Signaux acoustiques, comportement et systématique de quelques espèces de Gryllides (Orthoptères, Ensifères). D.Sc. Thesis, University of Paris. (1966).Google Scholar
  40. Lim, H.-C., Vickery, V.R., Kevan, D. K. McE.: Cytological studies of Antipodean Teleogvyllus species and their hybrids (Orthoptera: Gryllidae). Can. J. Zool. 47:189–196. (1969).CrossRefGoogle Scholar
  41. Lim, H.-C., Vickery, V.R., Kevan, D. K. McE.: Cytogenetic studies in relation to taxonomy within the family Gryllidae (Orthoptera). I. Subfamily Gryllinae. Can. J. Zool. 51:179–186. (1973).CrossRefGoogle Scholar
  42. MacFarlane, J.R., Drummond, F.H.: Embryonic diapause in a hybrid between two Australian species of field crickets, Teleogvyllus (Orthoptera: Gryllidae). Aust. J. Zool. 18: 265–272. (1970).CrossRefGoogle Scholar
  43. Masaki, S.: Geographic variation of diapause in insects. Bull. Fac. Agric. Hirosaki Univ. 7:66–98. (1961)Google Scholar
  44. Masaki, S.: Geographic variation in the intrinsic incubation period: A physiological cline in the Emma field cricket (Orthop- tera:Gryllidae:Teleogvyllus). Bull. Fac. Agric. Hirosaki Univ. 11:59–90. (1965).Google Scholar
  45. Masaki, S.: Geographic variation and climatic adaptation in a field cricket (Orthoptera:Gryllidae). Evolution 21:725–741. (1967).CrossRefGoogle Scholar
  46. Masaki, S., Ohmachi, F.: Divergence of photoperiodic response and hybrid development in Teleogvyllus (Orthoptera:Gryllidae). Kontyu 35:83–105. (1967).Google Scholar
  47. Mayr, E.: Animal Species and Evolution. Cambridge, Massachusetts: Belknap Press, 1963a.Google Scholar
  48. Mayr, E.: Reply to criticism by R.D. Alexander. Syst. Zool. 12: 204–206. (1963b).CrossRefGoogle Scholar
  49. McGregor, E.A.: The true cricket - a serious cotton pest in California. USDA Circular No. 75:1–8. (1929).Google Scholar
  50. Monteith, L.G.: Crickets as predators of the apple maggot Rhagoletis pomonella (Diptera:Tephritidae). Can. Ent. 103:52–58. (1971).CrossRefGoogle Scholar
  51. Nebeker, A.V.: Effect of temperature at different altitudes on the emergence of aquatic insects from a single stream. J. Kansas Ent. Soc. 44:26–35. (1971).Google Scholar
  52. Nei, M.: Genetic distance between populations. Amer. Natur. 106: 283–292. (1972).CrossRefGoogle Scholar
  53. Ohmachi, F., Masaki, S.: Interspecific crossing and development of hybrids between the Japanese species ofTeleogvyllus (Orthoptera: Gryllidae). Evolution 18:405–416. (1964).CrossRefGoogle Scholar
  54. Ohmachi, F., Matsuura, H.: On the Japanese large field cricket and its allied species. Bull. Fac. Agric. Mie Univ. 2:63–72. (1951) (In Japanese).Google Scholar
  55. Rakshpal, R.: Diapause in the eggs of Gvyllus pennsylvanious Bur- meister (Orthoptera:Gryllidae). Can. J. Zool. 41:179–194. (1962).CrossRefGoogle Scholar
  56. Randell, R.L., Kevan, D. K. McE.: A cytological study of certain American species of Gvyllus Linne (Orthoptera:Gryllidae) and their hybrids. Ann. Soc. Ent. Quebec 7:48–59. (1962).Google Scholar
  57. Severin, H.C.: The common black field cricket - a serious pest in South Dakota. South Dakota Exp. Sta. Tech. Bull. 295:1–51. (1935).Google Scholar
  58. Smith, D.S.: Notes on the destruction of grasshopper eggs by field cricket Acheta assimilis luctuosus (Serville) (Orthoptera: Gryllidae). Can. Ent. 91:127. (1959).CrossRefGoogle Scholar
  59. Sparks, A.N., Chiang, H.C., Keaster, A.J., Fairchild, M.L., Brindley, T.A.: Field studies of European corn borer biotypes in the midwest. J. Econ. Ent. 59:922–928. (1966).Google Scholar
  60. Tauber, M.J., Tauber, C.A.: Environmental control of univoltinism and its evolution in an insect species. Can. J. Zool. 54:260–265.(1976).CrossRefGoogle Scholar
  61. Tauber, C.A., Tauber, M.J., Nechols, J.R.: Two genes control seasonal isolation in sibling species. Science 197;592–593. (1977).PubMedCrossRefGoogle Scholar
  62. Thomas, N.A., Reed, L.B.: The field cricket as a pest of strawberries and its control. J. Econ. Ent. 30:137–140. (1937).Google Scholar
  63. Walker, T.J.: Gvyllus ovisopis n. sp.: An egg-diapausing univoltine cricket with no calling song (Orthoptera:Gryllidae). Fla. Ent. 56:13–22. (1974).CrossRefGoogle Scholar
  64. White, M.J.D. (ed.): Genetic Mechanisms of Speciation in Insects. Sydney: Australia and New Zealand Book Co., 19 74.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • R. G. Harrison

There are no affiliations available

Personalised recommendations