Skip to main content

Regulation of Heme Biosynthesis in Mouse Friend Virus-Transformed Cells in Culture

  • Chapter

Abstract

Mouse Friend virus-transformed erythroleukemia cells in culture comprise a homogeneous population of transformed erythroid precursor cells that can continuously divide in vitro. They do not normally differentiate along the erythroid pathway in culture. These cells, however, can be induced to undergo terminal erythroid differentiation by addition to the culture of dimethylsulfoxide (DMSO) or a variety of other apparently unrelated compounds. Such erythroid differentiation is characterized by the appearance of erythrocyte-specific proteins, e.g., hemoglobin,1 spectrin,2 acetylcholine esterase,3 erythrocyte membrane-specific antigens,4 a new histone-like chromatin protein, IP25,5 and enzymes of the heme biosynthetic pathway.6 Thus, these cells offer a very useful model in tissue culture for erythroid differentiation and permit biochemical studies of events occurring during the process of differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friend C, Scher W, Holland JG, et al: Hemoglobin synthesis in murine virus induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethylsulfoxide. Proc Natl Acad Sci (USA) 68: 378–382, 1971.

    CAS  Google Scholar 

  2. Eisen H, Bach R, Emery R: Induction of spectrin in Friend virus-transformed erythroleukemic cells. Proc Natl Acad Sci (USA) 74: 3898–3902, 1977.

    Article  CAS  Google Scholar 

  3. Conscience JA, Miller RA, Henry J, et al: Acetylcholine esterase, carbonic anhydrase and catalase activity in Friend erythroleukemic cells, non-erythroid mouse cell lines and their somatic hybrids. Exp Cell Res 705: 401–412, 1977.

    Article  Google Scholar 

  4. Furusawa M: Erythroid “differentiation” of Friend cells, in Ito Y, Dutcher RM (eds): Comparative Leukemia Research, 1973, Leukemogenesis, Biblio Haemat40; Tokyo, University of Tokyo Press, pp. 273–274, 1975.

    Google Scholar 

  5. Keppel F, Allet B, Eisen H: Appearance of a chromatin protein during the erythroid differentiation of Friend virus-transformed cells. Proc Natl Acad Sci (USA) 74: 653–656, 1977.

    Article  CAS  Google Scholar 

  6. Sassa S: Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J ExptMed 745: 305–315, 1976.

    Article  Google Scholar 

  7. Ross J, Gielen, J, Packman S, et al: Globin gene expression in cultured erythroleukemic cells. J Mol Biol 57: 697–714, 1974.

    Article  Google Scholar 

  8. Eisen H, Keppel-Ballivet F, Georgopoulos CP, et al: Biochemical and genetic analysis of erythroid differentiation in Friend virus-transformed murine erythroleukemia cells. In Cold Spring Harbor Conference on “Differentiation of Hematopoietic Cells,” 1978 (in press).

    Google Scholar 

  9. Gusella J, Geller B, Clarke B, et al: Commitment to erythroid differentiation by Friend erythroleukemia cells: a stochastic analysis. Cell 9: 221–229, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Urabe A, Murphy M, Jr, Sassa S: Studies on erythroid differentiation in a wild-type and DMSO-resistant clones of Friend-virus transformed cells: Effects of hemin, hemoglobin and erythropoietin, in Murphy MJ Jr (ed): In Vitro Aspects of Erythropoiesis, p. 149, New York, Springer-Verlag, 1978.

    Google Scholar 

  11. Nakao K, Sassa S, Wada O, et al: Enzymatic studies on erythroid differentiation and proliferation. Ann NY Acad Sci 749: 224–228, 1968.

    Article  Google Scholar 

  12. Freshney RI, Paul J: The activities of three enzymes of haem synthesis during hepatic erythropoiesis in the mouse embryo. J Embryol Exp Morph 26: 313–322, 1971.

    PubMed  CAS  Google Scholar 

  13. Irving RA, Mainwaring WIP, Spooner PM: The regulation of haemoglobin synthesis in cultured chick blastoderms by steroids related to 5 ß-androstane. Biochem J 154: 81–93, 1976.

    PubMed  CAS  Google Scholar 

  14. Tien W, White DC: Linear sequential arrangement of genes coding for the biosynthetic path-way of protoheme in Staphylococcus aureus. Proc Natl Acad Sci (USA) 61: 1392–1398, 1969.

    Article  Google Scholar 

  15. Ross J, Sautner D: Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell 8: 513–520, 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Dabney BJ, Beaudet AL: Increase in globin chains and globin mRNA in erythroleukemia cells in response to hemin. Arch Biochem Biophys 179: 106–112, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Granick S, Sassa S: δ-Aminolevulinic acid synthetase and the control of heme and chlorophyll synthesis, in “Metabolic Regulation,” (Vol. 5 of Metabolic Pathways), ed. by H. J. Vogel, Academic Press, New York, pp. 77–141, 1971.

    Google Scholar 

  18. Woods JS, Murphy VV: δ-Aminolevulinic acid synthetase from fetal rat liver: studies on the partially purified enzyme. Molec Pharmacol 11: 70–78, 1975.

    CAS  Google Scholar 

  19. Matthews MB, Hunt T, and Brayley A: Specificity of the control of protein synthesis by haemin. Nature (New Biol) 243: 230–233, 1973.

    Google Scholar 

  20. Beuzard Y, Rodvien R, London IM: Effect of hemin on the synthesis of hemoglobin and other proteins in mammalian cells. Proc Natl Acad Sci (USA) 70: 1022–1026, 1973.

    Article  CAS  Google Scholar 

  21. Clemens MJ, Henshaw EC, Rahamimoff H, et al: Met-tRNAfMet binding to 40S ribosomal sub-units: A site for the regulation of initiation of protein synthesis by hemin. Proc Natl Acad Sci (USA) 71: 2946–2950, 1974.

    Article  CAS  Google Scholar 

  22. Levin DH, Ranu RS, Ernst V, et al: Regulation of protein synthesis in reticulocyte ly sates: Phosphorylation of methionyl tRNAf binding factor by protein kinase activity of translational inhibitor isolated from heme-deficient lysates. Proc Natl Acad Sci (USA) 73: 3112–3116, 1976.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sassa, S., Granick, J.L., Eisen, H., Ostertag, W. (1978). Regulation of Heme Biosynthesis in Mouse Friend Virus-Transformed Cells in Culture. In: Murphy, M.J., Peschle, C., Gordon, A.S., Mirand, E.A. (eds) In Vitro Aspects of Erythropoiesis. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6301-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6301-2_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6303-6

  • Online ISBN: 978-1-4612-6301-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics