Misfit, Strain, and Dislocations in Epitaxial Structures: Si/Si, Ge/Si, Si/Al2O3

  • J. Blanc

Abstract

The growth of an epitaxial semiconductor layer on an insulating substrate (or vice versa) will in general lead to the development of strain in the composite structure because of lattice mismatch between the two substances or because of differential thermal contraction between the two layers. The strain may or may not be relieved, in whole or in part, by introduction of strain-or misfit-relieving dislocations, or cracks.

Keywords

Nickel Silane Argon Coherence Resis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, M. S. and C. J. Buiocchi, Appl. Phys. Letters 27, 325 (1975).ADSCrossRefGoogle Scholar
  2. Abrahams, M. S., L. R. Weisberg, C. J. Buiocchi, and J. Blanc, J. Mat. Sci. 4: 223 (1969).ADSCrossRefGoogle Scholar
  3. Abrahams, M. S., C. J. Buiocchi, J. F. Corboy, Jr., and G. W. Cullen, Appl. Phys. Letters 28, 275 (1976a).ADSCrossRefGoogle Scholar
  4. Abrahams, M. S., C. J. Buiocchi, R. T. Smith, J. F. Corboy, Jr., J. Blanc, and G. W. Cullen, J. Appl. Phys. 47, 5139 (1976b).ADSCrossRefGoogle Scholar
  5. Abrahams, M. S., J. Blanc, C. J. Buiocchi, and W. E. Ham, J. Appl. Phys., 49, 652 (1978).ADSCrossRefGoogle Scholar
  6. Ang, C. Y. and H. M. Manasevit, Solid State Electronics 8, 994 (1965).ADSCrossRefGoogle Scholar
  7. Blanc, J., unpublished data (1973).Google Scholar
  8. Blanc, J. and M. S. Abrahams, J. Appl. Phys. 47, 5151 (1976).ADSCrossRefGoogle Scholar
  9. Bloem, J. and A. H. Goemans, J. Appl. Phys. 43: 1281 (1972).ADSCrossRefGoogle Scholar
  10. Booker, G. R., private communication (1973).Google Scholar
  11. Briante, J. D., J. M. Corbett, and F. W. Boswell, Thin Solid Films 14: 305 (1972).ADSCrossRefGoogle Scholar
  12. Brooks, H., Metal Interfaces, Cleveland: American Society for Metals (1952) p. 20.Google Scholar
  13. Cullis, A. G. and G. R. Booker, 7th Inter. Conf. Electron Microscopy, p. 423, Grenoble, 1970.Google Scholar
  14. Cullis, A. G., Ph.D. thesis, Oxford University (1972).Google Scholar
  15. Eversteyn, F. C., P. J. W. Severin, C. H. J. v. d. Brekel, and H. J. Peek, J. Electrochem. Soc. 117: 925 (1970).CrossRefGoogle Scholar
  16. Frank, F. C. and J. H. van der Merwe, Proc, Royal Soc. (London) A 198: 216 (1949).ADSCrossRefMATHGoogle Scholar
  17. Ham, W. E., M. S. Abrahams, C J Buiocchi, and J. Blanc, J. Electrochem. Soc. 124, 634 (1977).CrossRefGoogle Scholar
  18. Horn, F. H., Phys. Rev. 97: 1521 (1955).ADSCrossRefGoogle Scholar
  19. Jesser, W. A., J. Appl. Phys. 41: 39 (1970).ADSCrossRefGoogle Scholar
  20. Jesser, W. A. and D. Kuhlmann-Wilsdorf, Phys. Stat. Sol. 19: 95 (1967).ADSCrossRefGoogle Scholar
  21. Kasper, E. and H.-J. Herzog, Thin Solid Films 44, 357 (1977).ADSCrossRefGoogle Scholar
  22. Linnington, P., Ph.D. thesis, University of Cambridge (1974).Google Scholar
  23. Martin, R. M., Phys. Rev. B1: 4005 (1970).Google Scholar
  24. Matthews, J. W. (Ed.), Epitaxial Growth, New York; Academic Press (1975).Google Scholar
  25. Matthews, J. W., S. Mader, and T. B. Light, J. Appl. Phys. 41: 3800 (1970).ADSCrossRefGoogle Scholar
  26. Olsen, G. H. and W. A. Jesser, Acta Metall. 19: 1009, 1299 (1971).CrossRefGoogle Scholar
  27. Ruth, R. P., A. J. Hughes, J. L. Kenty, H. M. Manasevit, D. Medellin, A. C. Thorsen, Y. T. Chan, C. R. Viswanathan, and M. A. Ring, Final Report, Contract No. DAAH01–70-C-1311, Research, Development, Engineering and Missile Systems Laboratory, U.S. Army Missile Command (1973).Google Scholar
  28. Sugita, Y., M. Tamura, and K. Sugarawa, J. Appl. Phys. 40 3089 (1969A).Google Scholar
  29. Sugita, Y., M. Tamura, and K. Sugarawa, J. Vac. Sci. Technol. 6 585 (1969B).Google Scholar
  30. Tamura, M. and Y. Sugita, J. Appl. Phys. 44: 3442 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. Blanc

There are no affiliations available

Personalised recommendations