The Electrical Characterization of Heteroepitaxial Semiconducting Films

  • W. E. Ham


Heteroepitaxial semiconducting films (HSF) have become of considerable practical interest in the last few years, primarily because of their use in integrated circuits. Several U.S. and foreign semiconductor companies are offering products based on silicon-on-sapphire (SOS) technology. This particular combination of semiconductor and insulator has emerged as dominant mainly because silicon has the most desirable overall properties compatible with integrated circuit processing and because of all the possibly suitable insulating substrates, sapphire offers the best resistance to shattering during processing and has the lowest cost. SOS technology offers small parasitic device and interconnection capacitance and provides nearly ideal electrical isolation between devices when islands of silicon are used. Because silicon islands are involved, it is necessary to cover the steps (island edges) with different dielectrics or metals to form the circuits. This step-coverage problem is minimized by using as thin a silicon film as is practical. On the other hand, thinner films can have inferior electrical performance and may be undesirable. Typically the film thicknesses range from 0.2 to 4.0 µm, with most circuits using 0.4- to 1.0-µm films.


Surface Potential Series Resistance Gate Voltage Space Charge Region Inversion Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. C., Advances in Physics 19: 311 (1970).Google Scholar
  2. Anderson, J. C., Thin Solid Films 18: 239 (1973).Google Scholar
  3. Atalla, M. M., A. R. Bray, and R. Lindner, Suppl. Proc. Inst. Elec. Engrs. (London) Pt BI06: 1130 (1959).Google Scholar
  4. Buehler, M. G. and G. L. Pearson, Solid State Electronics 9: 395 (1966).ADSCrossRefGoogle Scholar
  5. Covington, D. W. and D. C. Ray, Solid State Electronics 16: 301 (1973).ADSCrossRefGoogle Scholar
  6. Covington, D. W. and D. C. Ray, J. Appl. Phys. 45: 2616 (1974).ADSCrossRefGoogle Scholar
  7. Crossley, P. A. and W. E. Ham, J. Electronic Materials 2: 465 (1973).ADSGoogle Scholar
  8. Cullen, G. W. and J. F. Corboy, J. Electrochem. Soc. 121: 1345 (1974).CrossRefGoogle Scholar
  9. Cullen, G. W., J. F. Corboy, and A. G. Kokkas, Technical Report AFAL-TR-73–200, June, 1973.Google Scholar
  10. Deal, B. E. and M. Sklar, J. Electrochem. Soc. 112: 430 (1965).CrossRefGoogle Scholar
  11. Elliot, A. B. M. and J. C. Anderson, Solid State Electronics 15: 531 (1972).ADSCrossRefGoogle Scholar
  12. Ernisse, E. P. and C. B. Norris, Solid State Electronics 16: 315 (1973).ADSCrossRefGoogle Scholar
  13. Flatley, D. W. and W. E. Ham, Paper presented at Electrochemical Society Meeting, New York (1974); Abstract: J. Electrochem. Soc. 121: 290C (1974); Extended abstract: 74–2, No. 198 (1974).Google Scholar
  14. Frankl, D. R., Electrical Properties of Semiconductor Surfaces, New York: Pergamon Press (1967).Google Scholar
  15. Garrett, C. G. B. and W. H. Brattain, Phys. Rev. 99: 376 (1955).ADSCrossRefGoogle Scholar
  16. Gates, J. L. and O. K. Griffith, Appl. Phys. Letters 27: 43 (1975).ADSCrossRefGoogle Scholar
  17. Goldsmith, N., R. V. D’Aiello, and R. A. Sunshine, NBS Special Publication 400–10, Spreading Resistance Symposium, Gaithersburg, MD, June, 1974.Google Scholar
  18. Goodman, A. M., IEEE Trans. Electron Devices ED-22: 63 (1975).Google Scholar
  19. Greene, R. E., P. R. Frankl, and J. N. Zemel, Phys. Rev. 118: 967 (1960).ADSCrossRefzbMATHGoogle Scholar
  20. Grove, A. S., Physics and Technology of Semiconductor Devices, New York: John Wiley and Sons (1967).Google Scholar
  21. Ham, W. E., Appl. Phys. Letters 21 440 (1972A).Google Scholar
  22. Ham, W. E., unpublished RCA Laboratories, Princeton, NJ (1972B).Google Scholar
  23. Ham, W. E., Paper presented at Electron Device Conference, Washington, DC (1973) Abstract No. 8.7 (Late News).Google Scholar
  24. Ham, W. E., Paper presented at Electrochemical Society Meeting, New York (1974); Abstract J. Electrochem. Soc. 121: 285C (1974); Extended abstract: 74–2, No. 144 (1974).Google Scholar
  25. Ham, W. E. and P. A. Crossley, Paper presented at AIME Conference on Electronic Materials, Boston, 1972.Google Scholar
  26. Heiman, F. P., IEEE Trans. Electron Devices ED-14: 781 (1967).Google Scholar
  27. Ho, P., K. Lehovec, and L. Fedotowsky, Surface Science 6: 440 (1962).CrossRefGoogle Scholar
  28. Hynecek, J., J. Appl. Phys. 45: 2806 (1974).ADSCrossRefGoogle Scholar
  29. Ipri, A. C., Appl. Phys. Letters 20: 1 (1972).ADSCrossRefGoogle Scholar
  30. Juhasz, C. and J. C. Anderson, Radio and Electronic Engineer, April, 1967, p. 223.Google Scholar
  31. Kamins, T. L., J. Appl. Phys. 42: 4357 (1971).ADSCrossRefGoogle Scholar
  32. Kokkas, A. G., personal communication, RCA Laboratories, Princeton, NJ (1973).Google Scholar
  33. Kranzer, D., Appl. Phys. Letters 25: 103 (1974).ADSCrossRefGoogle Scholar
  34. Lehovec, K., Appl. Phys. Letters 25: 279 (1974).ADSCrossRefGoogle Scholar
  35. Many, A., Y. Goldstein, and N. B. Grover, Semiconductor Surfaces, Amsterdam: North Holland Publishing Company (1965).Google Scholar
  36. Matere, H. F., Defect Electronics in Semiconductors, New York: Wiley-Interscience (1971).Google Scholar
  37. McGreivy, D. J., Ph.D. dissertation, University of California, Los Angeles, 1973.Google Scholar
  38. McGreivy, D. J. and C. R. Viswanathan, Appl. Phys. Letters 25: 505 (1974).ADSCrossRefGoogle Scholar
  39. McLane, G. T., Report No. 72–02, University of Pennsylvania, Moore School of Electrical Engineering (1971).Google Scholar
  40. Meyer, J. E., Jr., Ph.D. dissertation, Rutgers University, New Brunswick, NJ (1972).Google Scholar
  41. Naber, C. T. and J. E. O’Neill, Trans. AIME 242: 470 (1968).Google Scholar
  42. Neugebauer, C. A., J. Appl. Phys. 39: 3177 (1968).ADSCrossRefGoogle Scholar
  43. Petritz, R. L., Phys. Rev. 110: 1254 (1958).ADSCrossRefGoogle Scholar
  44. Picraux, S. T. and G. J. Thomas, J. Appl. Phys. 44: 594 (1973).ADSCrossRefGoogle Scholar
  45. Podor, B., Phys. Stat. Sol. 2: K193 (1970).ADSCrossRefGoogle Scholar
  46. Rai-Choudhury, P. and P. L. Hower, J. Electrochem. Soc. 120: 1761 (1973).CrossRefGoogle Scholar
  47. Salama, C. A. T., T. W. Tucker, and L. Young, Solid State Electronics 10: 339 (1967).ADSCrossRefGoogle Scholar
  48. Schlegel, E. S., G. L. Schnable, R. F. Schwarz, and J. P. Spratt, IEEE Trans. Electron Devices ED-15: 973 (1968).Google Scholar
  49. Schlötterer, H. and Ch. Zaminer, Phys. Stat. Sol. 15: 399 (1966).ADSCrossRefGoogle Scholar
  50. Schlötterer, H., Solid State Electronics 11: 947 (1968).ADSCrossRefGoogle Scholar
  51. Schroder, D. K. and H. C. Nathanson, Solid State Electronics 13: 577 (1970).ADSCrossRefGoogle Scholar
  52. Schroder, D. K. and P. Rai-Chaudhury, Appl. Phys. Letters 22: 455 (1973).ADSCrossRefGoogle Scholar
  53. Shannon, J. M., Solid State Electronics 14: 1099 (1971).ADSCrossRefGoogle Scholar
  54. Shockley, W., W. W. Hooper, H. J. Queisser, and W. Schroen, Surface Science 2: 277 (1964).ADSCrossRefGoogle Scholar
  55. Stein, H. J., Solid State Electronics 15: 1209 (1972).ADSCrossRefGoogle Scholar
  56. Tango, H., Y. Nishi, K. Maesuchi, and J. Iwamura, Paper presented at fifth IEEE Semiconductor Interface Specialist Conference, Puerto Rico, December, 1974.Google Scholar
  57. Tihanyi, J., Siemens Forsch. Entwickl 1: 263 (1972). Valdes, L. B., Proc. IRE — 420 (1954).Google Scholar
  58. Waxman, A., V. E. Henrich, F. V. Shallcross, H. Borkan, and P. K. Weimer, J. Appl. Phys. 36: 168 (1965).ADSCrossRefGoogle Scholar
  59. Weisberg, L. R., J. Appl. Phys. 33: 1817 (1962).ADSCrossRefGoogle Scholar
  60. Williams, R. and M. H. Woods, J. Appl. Phys. 44: 1026 (1973).ADSCrossRefGoogle Scholar
  61. Wrigley, C. Y. and L. J. Kroko, Semiconductor Silicon, New York: The Electrochemical Society (1969) p. 329.Google Scholar
  62. Yasuda, Y. and Y. Ohmura, Japanese J. Appl. Phys. 8: 1098 (1969).ADSCrossRefGoogle Scholar
  63. Yu, A. Y. C., Solid State Electronics 13: 239 (1970).ADSCrossRefGoogle Scholar
  64. Zaininger, K. H. and F. P. Heiman, Solid State Tech., 13 (5): 49 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • W. E. Ham

There are no affiliations available

Personalised recommendations