Skip to main content

Enzymes of Acetylcholine Metabolism

  • Chapter
Enzymes in Anesthesiology

Abstract

Acetylcholine (ACh) and two of its regulatory enzymes, namely, choline acetyltransferase (EC 2.3.1.6; choline acetylase, ChAc) and acetyl-cholinesterase [EC 3.1.1.7; acetylcholine acetyl hydrolase; red cell cholinesterase; (ChE); specific ChE; AChE] have important physiologic functions. Thus, for example, they are essential for neuromuscular and ganglionic transmission, interneuronal transmission in certain parts of the central nervous system (CNS) (83, 126, 215, 341a, 401) regulation of membrane permeability and perhaps also for axonal conduction (353, 358).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abderhalden, E., Paffrath, H., and Sickel, H., Beitrag zur Frage der Inkre-(Hormon) Wirkung des Cholins auf die motorischen Funktionen des Verdauungst kanales. II. Mitteilung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 207, 241 (1925).

    Article  CAS  Google Scholar 

  2. Adams, D. H., The specificity of the human erythrocyte cholinesterase. Biochem. Biophys. Acta 3, 1 (1949).

    Article  CAS  Google Scholar 

  3. Adams, R. C., Curare as aid to relaxation in anesthesia. Surg. Clin. North Am. 25, 735 (1945).

    Google Scholar 

  4. Adie, P. A., The reactivation of inhibited atropinesterase (EC 3–1–1–10). In “Proceedings of the Conference of Structure and Reactions of DFP Sensitive Enzymes” (E. Heilbronn, ed.), p. 167. Research Institute of National Defence, Stockholm, 1967.

    Google Scholar 

  5. Albanus, L., Järplid, B., and Sundwall, A., On the toxicity of TMB-4, a reactivator of inhibited cholinesterase. Biochem. Pharmacol. 12, 111 (1963).

    Article  Google Scholar 

  6. Aldridge, W. N., The differentiation of true and pseudo cholinesterase by organophosphorus compounds. Biochem. J. 53, 62 (1953).

    CAS  Google Scholar 

  7. Alles, G. A., and Hawes, R. C., Cholinesterases in the blood of man, J. Biol. Chem.133, 375 (1940).

    CAS  Google Scholar 

  8. Allot, E. N., and Thompson, J. D., The familial incidence of low pseudocholinesterase level. Lancet2, 517 (1956).

    Article  Google Scholar 

  9. Ambrus, C. M., and Ambrus, J. L., Effect of hyperthyroidism and treatment with thiouracil on cholinesterase levels. Z. Vitam.-, Horm.- Fermentforsch.2, 464 (1948).

    Google Scholar 

  10. Ambrus, P. S., and Ambrus, J. L., Effect of thyroid hormone and thyroidectomy on the synthesis of cholinesterases. Res. Commun. Chem. Pathol. Pharmacol. 2, 118 (1971).

    PubMed  CAS  Google Scholar 

  11. Ambrus, M. S., and Black, J., Role of the pituitary and sex hormones in the synthesis of cholinesterases. Life Sci. 7, 279 (1968).

    Article  PubMed  CAS  Google Scholar 

  12. Ammon, R., and Meyer, H., Zur stereochemischen Spezifität der Acetylcholinesterase. Hoppe-Seyler’s Z. Physiol. Chem. 314, 198 (1959).

    Article  PubMed  CAS  Google Scholar 

  13. Ang. M., Fell, S., and Foldes, F. F., unpublished data (1974).

    Google Scholar 

  14. Angel, C. R., Mahin, D. T., Farris, R. D., Woodward, K. T., Yahas, J. M., and Storer, J. B., Heritability of plasma cholinesterase activity in inbred mouse strains. Science 156, 529 (1967).

    Article  PubMed  CAS  Google Scholar 

  15. Ansell, G. B., and Spanner, S., The origin and turnover of choline in the brain. In “Drugs and Cholinergic Mechanisms in the CSN” (E. Heilbronn and A. Winter, eds.), p. 143. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  16. Antopol, W., Schifrin, A., and Tuchuran, L., Decreased cholinesterase activity of serum in jaundice and in biliary disease. Proc. Soc. Exp. Biol. Med 38, 363 (1938).

    CAS  Google Scholar 

  17. Argent, D. S., Dennick, O. P., and Hofbiger, F., Prolonged apnoea after suxamethonium in man. Br. J. Anaesth. 27, 24 (1955).

    Article  CAS  Google Scholar 

  18. Artusio, J. F., Jr., Riker, W. F., Jr., and Wescoe, W. C., Studies on the inter-relationship of certain cholinergic compounds. IV. Anticurare action in anesthetized man J. Pharmacol. Exp. Ther. 100, 227 (1950).

    PubMed  CAS  Google Scholar 

  19. Auditore, J. V., and Sastry, B. V. R., Stereospecificity of erythrocyte acetylcholinesterase. Arch. Biochem. Biophys. 105, 506 (1964).

    Article  PubMed  CAS  Google Scholar 

  20. Auerbach, M. E., Davis, D. L., and Foldes, F. F., Micromethod for the colorimetric determination of tetracaine. Fed Proc., Fed Am. Soc. Exp. Biol. 11, 319 (1952).

    Google Scholar 

  21. Augustinsson, K. B., Cholinesterases; a study in comparative enzymology. Acta Physiol. Scand 15, Suppl. 52, 1 (1948).

    Google Scholar 

  22. Augustinsson, K. B., Substrate concentration and specificity of choline ester-splitting enzymes. Arch. Biochem. 23, 111 (1949).

    PubMed  CAS  Google Scholar 

  23. Augustinsson, K. B., The normal variation of human blood cholinesterase activity. Acta Physiol. Scand 35, 40 (1955).

    Article  PubMed  CAS  Google Scholar 

  24. Augustinsson, K. B., Electrophoresis studies on blood plasma esterases. I. Mammalian plasmata. Acta Chem. Scand. 13, 571 (1959).

    Article  CAS  Google Scholar 

  25. Augustinsson, K. B., Electrophoresis studies on blood plasma esterases. II. Avian, reptilian, amphibian and piscine plasmata. Acta Chem. Scand. 13, 1081 (1959).

    Article  CAS  Google Scholar 

  26. Augustinsson, K. B., Multiple forms of esterase in vertebrate blood plasma. Ann. N.Y. Acad Sci. 94, 844 (1961).

    Article  CAS  Google Scholar 

  27. Augustinsson, K. B., Classification and comparative enzymology of the cholinesterases and methods for their determination. In “Cholinesterases and Anti-Cholinesterase Agents” (G. B. Koelle, ed.), p. 89. Springer-Verlag, Heidelberg, Berlin, New York, 1963.

    Google Scholar 

  28. Augustinsson, K. B., The nature of an “anionic” site in butyrylcholinesterase compared with that of a similar site in acetylcholinesterase. Biochim. Biophys. Acta 128, 351 (1966).

    PubMed  CAS  Google Scholar 

  29. Augustinsson, K. B., and Isacshen, T., The enzymatic hydrolysis of the ß-methyl derivatives of acetylcholine and acetylthiocholine. Acta Chem. Scand 11, 750 (1957).

    Article  CAS  Google Scholar 

  30. Austin, L., and Berry, W. K., Two selective inhibitors of cholinesterase. Biochem. J. 54, 695 (1953).

    PubMed  CAS  Google Scholar 

  31. Aven, M. H., Light, A., and Foldes, F. F., Hydrolysis of procaine in various mammalian plasmas. Fed Proc., Fed. Am. Soc. Exp. Biol. 12, 299 (1953).

    Google Scholar 

  32. Baart, N., Shanor, S. P., Van Hees, G. R., Erdos, E. G., and Foldes, F. F., Inhibitory effect of local anesthetics and their halogenated analogs on human plasma and red cell cholinesterase. Fed Proc., Fed Am. Soc. Exp. Biol. 15, 395 (1956).

    Google Scholar 

  33. Ballantyne, B., Histochemical and biochemical aspects of cholinesterase activity of adipose tissue. Arch. Int. Pharmacodyn. Ther. 173, 343 (1968).

    PubMed  CAS  Google Scholar 

  34. Barker, L. A., Dowdall, M. J., Essman, W. B., and Whittaker, V. P., The compartmentation of acetylcholine in cholinergic nerve terminals. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 193. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  35. Barlow, R. B., “Introduction to Chemical Pharmacology,” 2nd ed. Methuen, London, 1964.

    Google Scholar 

  36. Barlow, R. B., and Dixon, O. D., Choline acetyltransferase in the nettle urtica dioica L. Biochem. J. 132, 15 (1973).

    PubMed  CAS  Google Scholar 

  37. Barrnett, R. J., and Ball, E. G., Metabolic and ultrastructural changes induced in adipose tissue by insulin. J. Biophys. Biochem. Cytol. 8, 83 (1960).

    Article  PubMed  CAS  Google Scholar 

  38. Beckett, A. H., Vaughan, C. L., and Mitchard, M., Inhibition of the pseudocholinesterase in horse serum by some choline analogues. Biochem. Pharmacol 17, 1595 (1968).

    Article  PubMed  CAS  Google Scholar 

  39. Beleslin, D., and Polak, R. L., Depression by morphine and chloralose of acetylcholine release from the cat’s brain. J. Physiol. (London) 177, 411 (1965).

    CAS  Google Scholar 

  40. Berends, F., Reactiveringen “Veroudering” van Esterasen Geremd met Organische Fosforverbindengen. Thesis, University of Leiden (1964).

    Google Scholar 

  41. Berends, F., Stereospecificity in the reactivation and aging of butyryl-cholinesterase inhibited by organophosphates with an asymmetrical P-atom. Biochim. Biophys. Acta 81, 190 (1964).

    CAS  Google Scholar 

  42. Bergmann, F., Fine structure of the active surface of cholinesterase and the mechanism of enzymatic ester hydrolysis. Discuss. Faraday Soc. 20, 126 (1955).

    Article  Google Scholar 

  43. Bergmann, F., The structure of the active surface of cholinesterases and the mechanism of their catalytic action in ester hydrolysis. Adv. Catal. 10, 131 (1958).

    Google Scholar 

  44. Bergmann, F., and Segal, R., The relationship of quaternary ammonium salts to the anionic sites of true and pseudo cholinesterase. Biochem. J. 58, 692 (1954).

    PubMed  CAS  Google Scholar 

  45. Bergmann, F., and Segal, R., The characterization of tissue cholinesterases. Biochim. Biophys. Acta 16, 513 (1955).

    Article  PubMed  CAS  Google Scholar 

  46. Bergmann, F., Wurzel, M., and Shimoni, E., The enzymatic hydrolysis of acid anhydrides. Biochem. J. 55, 888 (1953).

    PubMed  CAS  Google Scholar 

  47. Bergmann, F., Rimon, S., and Segal, R., Effect of pH on the activity of eel esterase towards different substrates. Biochem. J. 68, 493 (1958).

    PubMed  CAS  Google Scholar 

  48. Berman, R., Wilson, I. B., and Nachmansohn, D., Choline acetylase specificity in relation to biological function. Biochim. Biophys. Acta 12, 315 (1953).

    Article  PubMed  CAS  Google Scholar 

  49. Berry, J. F., and Whittaker, V. P., The acyl-group specificity of choline acetylase. Biochem. J. 73, 447 (1959).

    PubMed  CAS  Google Scholar 

  50. Berry, W. K., and Davis, D. R., Factors influencing the rate of “aging” of a series of alkyl methylphosphorylacetylcholinesterases. Biochem. J. 100, 572 (1966).

    PubMed  CAS  Google Scholar 

  51. Beznak, A. B. L., Effect of acetylcholinesterase on the surviving frog heart. Nature (London) 181, 1190 (1958).

    Article  CAS  Google Scholar 

  52. Bidstrup, P. L., Bonnell, J. A., and Beckett, A. G., Paralysis following poisoning by a new organic phosphorus insecticide (Mipafox). Br. Med J. 1, 1068 (1953).

    Article  PubMed  CAS  Google Scholar 

  53. Blaber, L. C., Studies on the mode of action of drugs which facilitate neuro-muscular transmission. Thesis, University of London (1962).

    Google Scholar 

  54. Borders, R. W., Stephen, C. R., Nowill, W. K., and Martin, R., The interrelationship of succinylcholine and the blood cholinesterases during anesthesia. Anesthesiology 16, 401 (1955).

    Article  PubMed  CAS  Google Scholar 

  55. Boume, J. G., Collier, H. O. J., and Somers, G. F., Succinylcholine (Succinoylcholine). Muscle relaxant of short duration. Lancet 1, 1225 (1952).

    Google Scholar 

  56. Brestkin, A. P., Ivanova, L. A., and Svechnikova, V. V., On the influence of choline on the rate of hydrolysis of acetylcholine under the action of bovine erythrocyte cholinesterase. Biokhimiya 31, 416 (1966).

    CAS  Google Scholar 

  57. Brodie, B. B., Distribution and fate of drugs. In “Absorption and Distribution of Drugs” (T. B. Binns, ed.), p. 199 Williams & Wilkins, Baltimore, Maryland, 1964.

    Google Scholar 

  58. Brodie, B. B., and Maickel, R. P., Comparative biochemistry of drug metabolism. In “Metabolic Factors Controlling Duration of Drug Action” (B. B. Brodie and E. G. Erdos, eds.), p. 299. Macmillan, New York, 1962.

    Google Scholar 

  59. Brown, B. B., and Bailey, L., Neuromuscular blocking action of gabacholine and congeners. Pharmacologist 2, 77 (1960).

    Google Scholar 

  60. Brown, B. B., and Bailey, L., personal communication (1961).

    Google Scholar 

  61. Browning, E. T., and Schulman, M. P., Acetylcholine synthesis by cortex slices of rat brain. J. Neurochem. 15, 1391 (1968).

    Article  PubMed  CAS  Google Scholar 

  62. Bull, G. B., Hebb, C. O., and Ratkovie, D., Choline acetylase in the human placenta at different stages of development. Nature (London) 190, 1202 (1961).

    Article  CAS  Google Scholar 

  63. Bullock, T. H., Grundfest, H., Nachmansohn, D., and Rothenberg, M. A., Generality of the role of acetylcholine in nerve and muscle conduction. J. Neurophysiol. 10, 11 (1947).

    PubMed  CAS  Google Scholar 

  64. Burgen, A. S., and Chipman, L. M., The location of cholinesterase in the central nervous system. Q. J. Exp. Physiol. Cogn. Med Sci. 37, 61 (1952).

    PubMed  CAS  Google Scholar 

  65. Burnett, W., and Cohen, Y., Liver function after surgery: A study of 50 cases with particular reference to serum cholinesterase. Br. J. Anaesth. 72, 66 (1955).

    Article  Google Scholar 

  66. Bush, G. H., The use of muscle relaxants in burnt children. Anaesthesia 19, 231 (1964).

    Article  PubMed  CAS  Google Scholar 

  67. Callahan, J. F., and Kruckenberg, S. M., Erythrocyte cholinesterase activity of domestic and laboratory animals: Normal levels for nine species. Am. J. Vet. Res. 28, 1509 (1967).

    PubMed  CAS  Google Scholar 

  68. Cannavà, A., Azione in vitro degli alcaloidi fenantrenici dell’oppio e di alcuni loro derivati sulla attivita procainoesterasica del sangue. Arch. Ital. Sci. Farmacol. 3, 137 (1953).

    PubMed  Google Scholar 

  69. Cavallito, C. J., Some speculations on the chemical nature of postjunctional membrane receptors. Fed Proc., Fed Am. Soc. Exp. Biol. 26, 1647 (1967).

    CAS  Google Scholar 

  70. Cavallito, C. J., Bonding characteristics of acetylcholine stimulants and antagonists and cholinergic receptors. Ann. N.Y. Acad. Sci. 144, 900 (1967).

    Article  CAS  Google Scholar 

  71. Cavallito, C. J., Napoli, M. D., and O’Dell, T. B., Neuromuscular blocking activities of two short chain linked bisquaternary ammonium compounds. Arch. Int. Pharmacodyn. Then 149, 188 (1964).

    CAS  Google Scholar 

  72. Cavallito, C. J., White, H. L., and Yun, H. S., Inhibitors of choline acetyltransferase. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 97. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  73. Cavallito, C. J., Yun, H. S., Smith, J. C., and Foldes, F. F., Choline acetyltransferase inhibitors. Configurational and electronic features of styrylpyridine analogs. J. Med. Chem. 12, 134 (1969).

    Article  PubMed  CAS  Google Scholar 

  74. Cavallito, C. J., Yun, H. S., Kaplan, T., Smith, J. C., and Foldes, F. F., Choline acetyltransferase inhibitors. Dimensional and substituent effects among styrylpyridine analogs. J. Med Chem. 13, 221 (1970).

    Article  PubMed  CAS  Google Scholar 

  75. Cavallito, C. J., Yun, H. S., Edwards, M. L., and Foldes, F. F., Choline acetyltransferase inhibitors. Styrylpyridine analogs with nitrogen-atom modifications. J. Med Chem. 14, 130 (1971).

    Article  PubMed  CAS  Google Scholar 

  76. Celesia, G. G., and Jasper, J. J., Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16, 1053 (1966).

    PubMed  CAS  Google Scholar 

  77. Chang, C. H., and Gaddum, J. H., Choline esters in tissue extracts. J. Physiol. (London) 79, 255 (1933).

    CAS  Google Scholar 

  78. Changeux, J. P., Ryter, A., and Leuzinger, W., On the association of tyrocidine with acetylcholinesterase. Proc. Natl. Acad Sci. U.S.A. 62, 986 (1969).

    Article  PubMed  CAS  Google Scholar 

  79. Chao, L. P., and Wolfgram, F., Purification and some properties of choline acetyltransferase (E.C.2.3.1.6) from bovine brain. J. Neurochem. 20, 1075 (1973).

    Article  PubMed  CAS  Google Scholar 

  80. Chase, J. F. A., and Tubbs, P. K., Specific inhibitors of camitine acetyltransferase and other acetyltransferases. Biochem. J. 100, 47P (1966).

    CAS  Google Scholar 

  81. Childs, A. F., Davies, D. R., Green, A. L., and Rutland, J. P., The reactivation by oximes and hydroxamic acids of cholinesterases inhibited by organo-phosphorus compounds. Br. J. Pharmaco1. Chemother. 10, 462 (1955).

    CAS  Google Scholar 

  82. Cimasoni, G., Inhibition of cholinesterases by fluoride in vitro. Biochem. J. 99, 133 (1966).

    PubMed  CAS  Google Scholar 

  83. Clark, S. W., Glaubiger, G. A., and LaDu, B. N., Properties of plasma cholinesterase variants. Ann. N.Y. Acad Sci. 151, 710 (1968).

    PubMed  CAS  Google Scholar 

  84. Clitherow, J. W., Mitchard, M., and Harper, N. J., The possible biological function of pseudocholinesterase. Nature (London) 199, 1000 (1963).

    Article  CAS  Google Scholar 

  85. Coates, P. M., and Simpson, N. E., Genetic variations in human erythrocyte acetylcholinesterase. Science 175, 1466 (1972).

    Article  PubMed  CAS  Google Scholar 

  86. Cohen, J. A., Oosterbaan, R. A., and Warringa, M. G. P. J., The turnover number of aliesterase, pseudo-and true cholinesterase and the combination of these enzymes with diisopropylfluorophosphonate. Biochim. Biophys. Acta 18, 228 (1955).

    Article  PubMed  CAS  Google Scholar 

  87. Cohen, J. A., Oosterbaan, R. A., and Jansz, H. S., The chemical structure of the reactive group of esterases. Discuss. Faraday Soc. 20, 114 (1955).

    Article  Google Scholar 

  88. Cohen, J. A., Oosterbaan, R. A., Jansz, H. S., and Berends, F., The active site of esterases. J. Cell. Physiol. 54, 231 (1959).

    CAS  Google Scholar 

  89. Cohen, J. A., and Oosterbaan, R. A., The active site of acetylcholinesterase and related esterases and its reactivity towards substrates and inhibitors. In “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), p. 299. Springer-Verlag, Heidelberg, Berlin, New York, 1963.

    Google Scholar 

  90. Cole, B. R., and Leadbeater, L., Estimation of the stability of dry horse serum cholinesterase by means of an accelerated storage test. J. Pharm. Pharmacol. 20, 48 (1968).

    Article  PubMed  CAS  Google Scholar 

  91. Collier, B., Discussion. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 173. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  92. Couteaux, R., Morphological and cytochemical observations on the postsynaptic membrane at motor end-plates and ganglionic synapses. Exp. Cell Res. Suppl. 5, 294 (1958).

    CAS  Google Scholar 

  93. Couteaux, R., and Taxi, J., Recherches histochimiques sur la distribution des activities cholinestérasiques au niveau de la synapse myoneurale. Arch. Anat. Microsc. Morphol. Exp. 41, 352 (1952).

    Google Scholar 

  94. Crossland, J., The significance of brain acetylcholine. J. Ment. Sci. 99, 247 (1953).

    PubMed  CAS  Google Scholar 

  95. Crossland, J., Acetylcholine and the morphine abstinence syndrome. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 355. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  96. Curtis, D. R., Acetylcholine as a central transmitter. Can. J. Biochem. Physiol. 41, 2611 (1963).

    Article  PubMed  CAS  Google Scholar 

  97. Curtis, D. R., and Ryall, R. W., The excitation of Renshaw cells by cholinomimetics. Exp. Brain Res. 2, 49 (1966).

    PubMed  CAS  Google Scholar 

  98. Dale, H. H., The action of certain esters and ethers of choline and their relation to muscarine. J. Pharmacol. Exp. Ther. 6, 147 (1914).

    CAS  Google Scholar 

  99. Daly, M. deB., and Wright, P. G., The effects of anticholinesterases upon peripheral vascular resistance in the dog. J. Physiol. (London) 133, 475 (1956).

    CAS  Google Scholar 

  100. Davies, R. O., Marton, A. V., and Kalow, W., The action of normal and atypical cholinesterase of human serum upon a series of esters of choline. Can. J. Biochem.38, 545 (1960).

    Article  PubMed  CAS  Google Scholar 

  101. Davis, R., and Koelle, G. B., Electron microscopic localization of acetylcholinesterase and nonspecific cholinesterase at the neuromuscular junction by the gold-thiocholine and gold-thiolacetic acid methods. J. Cell Biol.34, 157 (1967).

    Article  PubMed  CAS  Google Scholar 

  102. Denz, F. A., On the histochemistry of the myoneural junction. Br. J. Exp. Pathol.34, 329 (1953).

    PubMed  CAS  Google Scholar 

  103. De Robertis, E., Morphological bases of synaptic processes and neurosecretion. In “Regional Neurochemistry” (S. S. Kety and J. Elkes, eds.), p. 248. Pergamon, Oxford, 1961.

    Google Scholar 

  104. De Robertis, E., Contribution of electronmicroscopy to some neuropharmacological problems. Biochem. Pharmacol. 9, 49 (1962).

    Article  Google Scholar 

  105. De Robertis, E., and Bennett, H. S., Some features of the submicroscopic morphology of synapses in frog and earthworm. J. Biophys. Biochem. Cytol. 1, 47 (1955).

    Article  Google Scholar 

  106. De Robertis, E., Pellegrino de Traldi, A., Rodrigues de Lores Amaiz, G., and Salganicoff, L., Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem. 9, 23 (1962).

    Article  Google Scholar 

  107. Dettbam, W. D., The acetylcholine system in peripheral nerve. Ann. N.Y. Acad Sci.144, 483 (1967).

    Article  Google Scholar 

  108. Dixon, E. M., Variation in human cholinesterase activity. Diss. Abstr. 17, 2567 (1957).

    Google Scholar 

  109. Dixon, M., and Webb, E. C., “Enzymes,” 2nd ed. Academic Press, New York, 1964.

    Google Scholar 

  110. Dixon, W. E., On the mode of action of drugs. Med. Mag. (London) 16, 454 (1907).

    Google Scholar 

  111. Doenicke, A., Klinische Bedeutung der Pseudocholinesterase. In “Pseudocholinesterasen” (H. W. Goedde, A. Doenicke, and K. Altland, eds.), p. 128. Springer-Verlag, Heidelberg, Berlin, New York, 1967.

    Google Scholar 

  112. Doenicke, A., and Holle, F., Das Verhalten der Leberfunktion im postoperativen Schock. Fortschr. Med. 80, 253 (1962).

    Google Scholar 

  113. Doenicke, A., Gärtner, T., Kreutzberg, G., Remes, J., Spiess, W., and Steinbereithner, K., Kritische Betrachtungen über einen Fall ohne Serum-cholinesterase. Proc. Eur. Congr. Anaesthesiol., 1st, Vienna, Sept. –9, 1962 Vol. 2, p. 187 (1962).

    Google Scholar 

  114. Doenicke, A., Gürtner, T., Kreutzberg, G., Remes, J., Spiess, W., and Steinbereithner, K., Serum cholinesterase anenzymia: Report of a case confirmed by enzyme-histochemical examination of liver-biopsy specimen. Acta Anaesthesiol. Scand. 7, 59 (1963).

    Article  PubMed  CAS  Google Scholar 

  115. Donhoffer, A., Feinere lokalization verschiedener cholinesterasen der nervösen Darmgeflechte. Acta Morphol. Acad. Sci. Hung. 8, 375 (1959).

    CAS  Google Scholar 

  116. Eccles, J. C., Fatt, P., and Koketsu, K., Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (London) 216, 524 (1954).

    Google Scholar 

  117. Ecobichon, D. J., and Israel, Y., Characterization of the esterases from electric tissue of electrophorus by starch-gel electrophoresis. Can. J. Biochem. 45, 1099 (1967).

    Article  PubMed  CAS  Google Scholar 

  118. Ecobichon, D. J., and Kalow, W., Some properties of the soluble esterases of liver. Can. J. Physiol. Pharmacol. 39, 1329 (1961).

    CAS  Google Scholar 

  119. Eldefrawi, M. E., Tripathi, R. K., and O’Brien, R. D., Acetylcholinesterase isoenzymes from the housefly brain. Biochem. Biophys. Acta 212, 308 (1970).

    PubMed  CAS  Google Scholar 

  120. Ehrenpreis, S., Acetylcholine and nerve activity. Nature (London) 201, 887 (1964).

    Article  CAS  Google Scholar 

  121. Ehrenpreis, S., Possible nature of the cholinergic receptor. Ann. N.Y. Acad Sci. 144, 720 (1967).

    Article  CAS  Google Scholar 

  122. Ehrenpreis, S., Molecular aspects of cholinergic mechanisms. In “Drugs Affecting the Peripheral Nervous System” (A. Burger, ed.), Vol. 1, p. 1. Dekker, New York, 1968.

    Google Scholar 

  123. Ehrenpreis, S., Fleish, J. H., and Mittag, T. W., Approaches to the molecular nature of pharmacological receptors. Pharmacol. Rev. 21, 131 (1969).

    PubMed  CAS  Google Scholar 

  124. Ehrenpreis, S., Hehir, R. M., and Mittag, T. W., Assay and properties of essential (junctional) cholinesterases of the rat diaphragm. In “Cholinergic Ligand Interactions” (D. J. Triggle, J. F. Moran, and E. A. Barnard, eds.), p. 67. Academic Press, New York, 1971.

    Google Scholar 

  125. Engelhard, N., and Erdmann, W. D., Ein neuer Reaktivator für durch alkyl-phosphatgehemmte Acetylcholinesterase. Kiln. Wochenschr. 41, 525 (1963).

    Article  CAS  Google Scholar 

  126. Engelhard, N., and Erdmann, W. D., Beziehungen zwischen chemischer Struktur und Cholinesterase reaktivierender Wirksamkeit bei einer Reihe neuer bis-quartärer Pyridin4-aldoxime. Arzneim.-Forsch. 14, 870 (1964).

    CAS  Google Scholar 

  127. Engelhard, N., Prchal, K., and Nenner, M., Acetyicholinesterase. Angew. Chem. 6, 615 (1967).

    Article  CAS  Google Scholar 

  128. Eränkö, O., and Teräväinen, H., Distribution of esterases in the myoneural junction of the striated muscle of the rat. J. Histochem. Cytochem. 15, 399 (1967).

    Article  PubMed  Google Scholar 

  129. Erdmann, W. D., Vergleichende Untersuchungen über das Penetrations-vermogen einiger Esterase-reaktivierender Oxime in das zentrale Nervensystem. Arzneim.- Fors ch. 15, 135 (1965).

    CAS  Google Scholar 

  130. Erdmann, W D, and Clarmann, M. V., Ein neuer Esterase-Reaktivator für die Behandlung von Vergiftungen mit Alkylphosphaten. Dtsch. Med Wochenschr. 88, 2201 (1963).

    Article  PubMed  CAS  Google Scholar 

  131. Erdos, E. G., Baart, N., Foldes, F. F., and Zsigmond, E. K., Activation of enzymatic hydrolysis of benzolcholine by tryptamine. Science 126, 1176 (1957).

    Article  PubMed  CAS  Google Scholar 

  132. Erdos, E. G., Foldes, F. F., Baart, N., and Shanor, S. P., Activating effect of tryptamine, benzylamine and histamine on plasma cholinesterase. Fed Proc., Fed Am. Soc. Exp. Biol. 16, 294 (1957).

    Google Scholar 

  133. Erdos, E. G., Baart, N., Shanor, S. P., and Foldes, F. F., The inhibitory effect of chlorpromazine and chlorpromazine sulfoxide on human cholinesterases. Arch. Int. Pharmacodyn. Ther. 117, 163 (1958).

    PubMed  CAS  Google Scholar 

  134. Erdos, E. G., Foldes, F. F., Zsigmond, E. K., Baart, N., and Zwartz, J. A., Acceleration of plasma cholinesterase activity by quaternary ammonium salts. Science 128, 92 (1958).

    Article  PubMed  CAS  Google Scholar 

  135. Erdos, E. G., Foldes, F. F., Baart, N., Zsigmond, E. K., and Zwartz, J. A., The acceleratring effect of narcotic analgesics on the hydrolysis of aromatic substrates by human plasma cholinesterase. Biochem. Pharmacol. 297 (1959).

    Article  CAS  Google Scholar 

  136. Evans, F. T., Gray, P. W. S., Lehmann, H., and Silke, E., Sensitivity to succinylcholine in relation to serum-cholinesterase. Lancet 1, 1229 (1952).

    Article  PubMed  CAS  Google Scholar 

  137. Everett, J. W., and Sawyer, C. H., Effects of castration and treatment with sex steroids on the synthesis of serum cholinesterase in the rat. Endocrinology 39, 323 (1946).

    Article  PubMed  CAS  Google Scholar 

  138. Faber, M., Relationship between serum choline esterase and serum albumin Acta Med. Scand 114, 72 (1943).

    Article  CAS  Google Scholar 

  139. Fatt, P., and Katz, B., Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (London) 117, 109 (1952).

    CAS  Google Scholar 

  140. Feldberg, W., Present views on mode of action of acetylcholine in central nervous system. Physiol. Rev. 25, 596 (1945).

    PubMed  CAS  Google Scholar 

  141. Feldberg, W., and Vogt, M., Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. (London) 107, 372 (1948).

    CAS  Google Scholar 

  142. Finster, M., personal communication (1974).

    Google Scholar 

  143. Foldes, F. F., Succinylmonochdline iodide: Its enzymatic hydrolysis and neuromuscular activity. Proc. Soc. Exp. Biol. Med 83, 187 (1953).

    PubMed  CAS  Google Scholar 

  144. Foldes, F. F., “Muscle Relaxants in Anesthesiology,” p. 80. Thomas, Springfield, Illinois, 1957.

    Google Scholar 

  145. Foldes, F. F., The pharmacology of neuromuscular blocking agents in man. Clin. Pharmacol. Ther. 1, 345 (1960).

    PubMed  CAS  Google Scholar 

  146. Foldes, F. F., The choice and mode of administration of relaxants. In “Muscle Relaxants” (F. F. Foldes, ed.), p. 1. Davis, Philadelphia, Pennsylvania, 1966.

    Google Scholar 

  147. Foldes, F. F., Adatok a Human Cholinesterasek és Choline Acetylase Biokémiajahoz. Orvostudomany 19, 15 (1968).

    CAS  Google Scholar 

  148. Foldes, F. F., Present concepts of the clinical use of muscle relaxants. Proc. Int. Anesth. Symp. 4th, Varna, Sept. 15–20, 1969 Vol. 4, p. 903 (1969).

    Google Scholar 

  149. Foldes, F. F., Presynaptic aspects of neuromuscular transmission and block. Anaesthesist 20, 6 (1971).

    PubMed  CAS  Google Scholar 

  150. Foldes, F. F., and Aven, M. H., The hydrolysis of procaine and 2-chloroprocaine in spinal fluid. J. Pharmacol. Exp. Ther. 105, 259 (1952).

    PubMed  CAS  Google Scholar 

  151. Foldes, F. F., and Deery, A., unpublished data (1972).

    Google Scholar 

  152. Foldes, F. F., and Deery, A., unpublished data (1974).

    Google Scholar 

  153. Foldes, F. F., and Foldes, V. M., a-amino fatty acid esters of choline: Interaction with ChE and neuromuscular activity in man. J. Pharmacol. Exp. Ther. 150, 220 (1965).

    PubMed  CAS  Google Scholar 

  154. Foldes, F. F., and McNall, P. G., 2-chloroprocaine: A new local anesthetic agent. Anesthesiology 13, 287 (1952).

    Article  PubMed  CAS  Google Scholar 

  155. Foldes, F. F., and McNall, P. G., Toxicity of local anesthetics in man. Dent. Clin. North Am. July 257 (1961).

    Google Scholar 

  156. Foldes, F. F., and McNall, P. G., Myasthenia Gravis: A guide for anesthesiologists. Anesthesiology 23, 837 (1962).

    Article  PubMed  CAS  Google Scholar 

  157. Foldes, F. F., and Rhodes, D. H., Jr., The role of plasma cholinesterase in anesthesiology. Anesth. Analg. (Cleveland) 32, 305 (1953).

    CAS  Google Scholar 

  158. Foldes, F. F., and Smith, J. C., The interaction of human cholinesterases with anticholinesterases used in the therapy of myasthenia gravis. Ann. N. Y. Acad Sci. 135, 287 (1966).

    Article  PubMed  CAS  Google Scholar 

  159. Foldes, F. F., Abernethy, G. S., Cavallito, C. J., Hollinger, I., and Pan, T., Tetraquaternary neuromuscular blocking agents. Abstr. Sci. Pap. Annu. Meet. Am. Soc. Anesthesiol. p. 159 (1972).

    Google Scholar 

  160. Foldes, F. F., Ambrus, J. L., Back, N., Bardos, T. J., and Foldes, V. M., Relationship between the anticholinesterase activity and side effect liability of AB 132 in man. Fed. Proc., Fed. Am. Soc. Exp. Biol. 21, 335 (1962).

    Google Scholar 

  161. Foldes, F. F., Arai, T., Gentsch, H. H., and Zarday, Z., The influence of glucocorticoids on plasma cholinesterase. Proc. Soc. Exp. Biol. Med 146, 918 (1974).

    PubMed  CAS  Google Scholar 

  162. Foldes, F. F., Aven, N. H., and Davis, D. L., The effect of preincubation on the inhibitory effect of neostigmine and dimethylcarbamate of (2-hydroxy-5-phenylbenzyl) trimethylammonium bromide (RO2–683) on the enzymatic hydrolysis of procaine. J. Pharmacol. Exp. Ther. 108, 330 (1953).

    PubMed  CAS  Google Scholar 

  163. Foldes, F. F., Baart, N., Shanor, S. P., and Erdos, E. G., The inhibitory effect of neuromuscular blocking agents and their antagonists on human cholinesterases. Anesthesiology 18, 163 (1957).

    Article  Google Scholar 

  164. Foldes, F. F., Baart, N., Shanor, S. P., and Erdos, E. G., The inhibitory effect of neuromuscular blocking agents and their antagonists on human cholinesterases. Atti Congr. Soc. Ital. Anestesiol. 11th, Venice, Sept. 12–15, 1958 p. 511 (1958).

    Google Scholar 

  165. Foldes, F. F., Colavincenzo, J. W., and Birch, J. H., Epidural anesthesia: A reappraisal (conclusions). Anesth. Analg. (Cleveland) 35, 89 (1956).

    CAS  Google Scholar 

  166. Foldes, F. F., Davidson, G. M., Duncalf, D., and Kuwabara, S., The intravenous toxicity of local anesthetic agents in man Clin. Pharmacol. Ther. 6, 328 (1965).

    PubMed  CAS  Google Scholar 

  167. Foldes, F. F., Davis, D. L., and Shanor, S. P., Comparison of hydrolysis of acetylcholine, benzoylcholine, succinylcholine and procaine in human plasma. Fed Proc., Fed Am. Soc. Exp. Biol. 13, 354 (1954).

    Google Scholar 

  168. Foldes, F. F., Davis, D. L., Shanor, S. P., and van Hees, G. R., Hydrolysis of ester-type local anesthetics and their halogenated analogs by purified plasma cholinesterase. J. Ant Chem. Soc. 77, 5149 (1955).

    Article  CAS  Google Scholar 

  169. Foldes, F. F., Erdos, E. G., Baart, N., Zwartz, J., and Zsigmond, E. K., Inhibition of human cholinesterases by narcotic analgesics and their antagonists. Arch Int. Pharmacodyn. Ther. 120, 286 (1959).

    PubMed  CAS  Google Scholar 

  170. Foldes, F. F., Erdos, E. G., Zsigmond, E. K., and Zwartz, J. A., Reactivation of neostigmine inhibited human plasma cholinesterase. J. Pharmacol. Exp. Ther. 129, 394 (1960).

    PubMed  CAS  Google Scholar 

  171. Foldes, F. F., Foldes, V. M., Smith, J. C., and Zsigmond, E. K., The relation between plasma cholinesterase and prolonged apnea caused by succinylcholine. Anesthesiology 24, 208 (1963).

    Article  PubMed  CAS  Google Scholar 

  172. Foldes, F. F., Foldes, V. M., and McNall, P. G., The use of echothiophate in myasthenia gravis. Clin. Pharmacol. Ther. 7, 620 (1966).

    PubMed  CAS  Google Scholar 

  173. Foldes, F. F., Hillmer, N. R., Molloy, R. E., and Monte, A. B., Potentiation of the neuromuscular effect of succinylcholine by hexafluorenium. Anesthesiology 21, 50 (1960).

    Article  PubMed  CAS  Google Scholar 

  174. Foldes, F. F., Kepes, E. R., Kronfeld, P. P., and Shiffman, H. P., A rational approach to neuroleptanesthesia. Anesth. Analg. (Cleveland) 45, 642 (1966).

    CAS  Google Scholar 

  175. Foldes, F. F., McNall, P. G., Davis, D. L., Ellis, C. H., and Wnuck, A. L., Substrate competition between procaine and succinylcholine diiodide for plasma cholinesterase. Science 117, 383 (1953).

    Article  PubMed  CAS  Google Scholar 

  176. Foldes, F. F., Molloy, R. E., Zsigmond, E. K., and Zwartz, J. A., Hexafluorenium: Its anticholinesterase and neuromuscular activity. J. Pharmacol. Exp. Ther. 129, 400 (1960).

    PubMed  CAS  Google Scholar 

  177. Foldes, F. F., Molloy, R. E., McNall, P. G., and Koukal, L. R., The comparison of the intravenous toxicity of local anesthetic agents in man. J. Am. Med Assoc. 172, 1493 (1960).

    PubMed  CAS  Google Scholar 

  178. Foldes, F. F., Swerdlow, M., Lipschitz, E., and van Hees, G. R., Comparison of enzymatic hydrolysis of suxamethonium with their respiratory effects. Fed Proc., Fed Am. Soc. Exp. Biol. 14, 339 (1955).

    Google Scholar 

  179. Foldes, F. F., Swerdlow, M., Lipschitz, E., van Hees, G. R., and Shanor, S. P., Comparison of the respiratory effects of suxamethonium and suxethonium in man Anesthesiology 17, 559 (1956).

    Article  PubMed  CAS  Google Scholar 

  180. Foldes, F. F., van Hees, G. R., Shanor, S. P., and Baart, N., Interrelationship of suxamethonium, suxethonium and succinylmonocholine and human cholinesterase. Fed Proc., Fed. Am. Soc. Exp. Biol. 15, 422 (1956).

    Google Scholar 

  181. Foldes, F. F., van Hees, G. R., Davis, D. L., and Shnor, S. P., The structure-action relationship of urethane type cholinesterase inhibitors. J. Pharmacol. Exp. Ther. 122, 457 (1958).

    PubMed  CAS  Google Scholar 

  182. Foldes, F. F., Zsigmond, E. K., Foldes, V. M., and Erdos, E. G., The distribution of acetylcholinesterase and butyrylcholinesterase in the human brain. J. Neurochem. 9, 559 (1962).

    Article  PubMed  CAS  Google Scholar 

  183. Foldes, V. M., Foldes, F. F., and Zsigmond, E. K., The in vivo and in vitro anti-cholinesterase effect of phospholine iodide in man. Fed Proc., Fed Am. Soc. Exp. Biol. 20, 2167 (1961).

    Google Scholar 

  184. Fonnum, F., The “compartmentation” of choline acetyltransferase within the synaptosome. BioChem. J. 103, 262 (1967).

    PubMed  CAS  Google Scholar 

  185. Fonnum, F., Subcellular localization of choline acetyltransferase in brain. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 83. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  186. Forbath, A., Lehmann, H., and Silk, E., Prolonged apnea following succinylcholine. Lancet 2, 1067 (1953).

    Google Scholar 

  187. Fouts, J. R., Physiological impairment of drug metabolism. In “Metabolic Factors Controlling Duration of Drug Action” (B. B. Brodie and E. G. Erdos, eds.), p. 257. Macmillan, New York, 1962.

    Google Scholar 

  188. Fraser, P. J., Acceleration of the enzymatic hydrolysis of benzoylcholine. Br. J. Pharmacol. Chemother. 11, 7 (1956).

    PubMed  CAS  Google Scholar 

  189. Friede, R. L., and Fleming, L. M., A comparison of cholinesterase distribution in the cerebellum of several species. J. Neurochem. 11, 1 (1964).

    Article  PubMed  CAS  Google Scholar 

  190. Friess, S. L., and Baldridge, H. D., The acetylcholinesterase surface. VI. Further studies with cyclic isomers as inhibitors and substrates. J. Am. Chem. Soc. 78, 2482 (1956).

    Article  CAS  Google Scholar 

  191. Friess, S. L., and McCarville, W. J., Nature of the acetyl cholinesterase surface. II. The ring effect in enzymatic inhibition of the substituted ethylenediamine type. J. Am. Chem. Soc. 76, 2260 (1954).

    Article  CAS  Google Scholar 

  192. Fuhner, H., Untersuchungen über die periphere Wirkung des Physostigmins. Arch. Exp. Pathol. Pharmakol. 82 205 (1917–1918).

    Article  Google Scholar 

  193. Fuhner, H., Untersuchungen über den Synergismus von giften. W. Die Chemische Erregbarkeits-steigerung glatter Muskulatur. Arch. Exp. Pathol. Pharmakol. 82 51 (1917–1918).

    Google Scholar 

  194. Funke, A., Bagot, J., and Depierre, F., Anticholinestérasiques. I. Synthèse de diphénoxyalcanes porteurs d’une ou deux fonctions phénoliques libres. C. R. Hebd. Seances Acad. Sci. (Paris) 239, 329 (1954).

    CAS  Google Scholar 

  195. Funnel, H., and Oliver, W. T., Proposed physiological function for plasma cholinesterase. Nature (London) 208, 689 (1965).

    Article  CAS  Google Scholar 

  196. Gerebtzoff, M. A., “Cholinesterase. A Histochemical Contribution to the Solution of Some Functional Problems.” Pergamon, Oxford, 1959.

    Google Scholar 

  197. Giacobini, E., and Holmstedt, B., Cholinesterase content of certent of certain regions of the spinal cord as judged by histochemical and Cartesian diver technique. Acta Physiol. Scand 42, 12 (1958).

    Article  PubMed  CAS  Google Scholar 

  198. Giarman, N. J., and Pepen, G., Drug-induced changes in brain acetylcholine. Br. J. Pharmacol. Chemother. 19, 226 (1962).

    PubMed  CAS  Google Scholar 

  199. Glick, D., Studies on the specificity of choline esterase. J. Biol. Chem. 125, 729 (1938).

    CAS  Google Scholar 

  200. Glick, D., Some additional observations on the specificity of choline esterase. J. Biol. Chem. 137, 357 (1941).

    CAS  Google Scholar 

  201. Glover, V. A. S., and Potter, L. T., Purification and properties of choline acetyltransf erase from ox brain striate nuclei. J. Neurochem. 18, 571 (1971).

    Article  PubMed  CAS  Google Scholar 

  202. Goedde, H. W., and Altland, K., Biochemic und Genetike der Pseudocholinesterasen. In “Cholinesterasen: Pharmakogenetik, Biochemic Klinik” (H. W. Goedde, A. Doenicke, and K. Altland, eds.), p. 1. Springer-Verlag, Berlin, Heidelberg, and New York, 1967.

    Google Scholar 

  203. Goedde, H. W., and Baitsch, H., Nomenclature of pseudocholinesterase polymorphism Br. Med. J. 2, 310 (1964).

    Article  Google Scholar 

  204. Goedde, H. W., and Baitsch, H., On nomenclature of pseudocholinesterse polymorphism. Acta Genet. Stat. Med. 14, 366 (1964).

    PubMed  CAS  Google Scholar 

  205. Goedde, H. W., and Fuss, W., Differenzierung von Pseudocholinesterase-Varienten im Diffusionstest. Klin. Wochenschr. 42, 286 (1964).

    Article  PubMed  CAS  Google Scholar 

  206. Goedde, H. W., and Fuss, W., Untersuchungen zur Phylogenetic der Pseudo-cholinesterasen. Humangenetik 1, 126 (1964).

    Article  PubMed  CAS  Google Scholar 

  207. Goedde, H. W., Altland, K., and Scholler, L., Pharmakogenetische Reaktion auf Succinyldicholin: Therapie der verlängerten Apnoe. Med Klin. (Munick) 62, 1631 (1967).

    CAS  Google Scholar 

  208. Goedde, H. W., Altland, K., and Schloot, W., Therapy of prolonged apnea after suxamethonium with purified pseudocholinesterase: New data on kinetics of the hydrolysis of succinyldicholine and succinylmonocholine and further data on Nacetyltransf erase-polymorphism. Ann. N.Y. Acad. Sci. 151, 742 (1968).

    PubMed  CAS  Google Scholar 

  209. Goedde, H. W., Gehring, D., and Hofmann, R. A., On the problem of a “silent gene” in pseudocholinesterase polymorphism. Biocheim. Biophys. Acta 107, 391 (1965).

    CAS  Google Scholar 

  210. Goedde, H. W., Gehring, D., and Hofman, R. A., Biochemische Untersuchungen zur Frage der Existenz eines “siltent gene” in Polymorphismus der Pseudo-cholinesterasen. Humangenetik 1, 607 (1965).

    PubMed  CAS  Google Scholar 

  211. Goedde, H. W., Held, K. R., and Altland, K., Hydrolysis of succinyldicholine and succinylmonocholine in human serum. Mol. Pharmacol. 4, 274 (1968).

    PubMed  CAS  Google Scholar 

  212. Gold, A. J., Weller, J. M., and Freeman, G., Metabolic and acid-base changes following acute cholinesterase inhibition. Am. J. Physiol. 188, 321 (1957).

    PubMed  CAS  Google Scholar 

  213. Goldberg, A. M., and McCaman, R. E., A quantitative michrochemical study of choline acetyltransferase in the cerebellum of several species. Life Sci. 6, 1493 (1967).

    Article  PubMed  CAS  Google Scholar 

  214. Goutier-Pirotte, M., and Gerebtzoff, M. A., Acetylcholinesterase in the guinea pig placenta; initial results of histochemical and biochemical research. Arch. Int. Physiol. Biochim. 63, 445 (1955).

    Article  PubMed  CAS  Google Scholar 

  215. Graig, F. A., and Foldes, F. F., unpublished data (1969).

    Google Scholar 

  216. Gray, E. G., and Whittaker, V. P., The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79 (1962).

    PubMed  CAS  Google Scholar 

  217. Green, A. L., and Nicholls, J. D., The reactivation of phosphorylated chymotrypsin. Biochem. J. 72, 70 (1959).

    PubMed  CAS  Google Scholar 

  218. Grob, D., and Johns, R. J., Use of oximes in the treatment of intoxication by anti-cholinesterase compounds in normal subjects. Am. J. Med 24, 497 (1958).

    Article  PubMed  CAS  Google Scholar 

  219. Grob, D., and Johns, R. J., Use of oximes in the treatment of intoxication by anti-cholinesterase compounds in patients with myasthenia gravis. Am. J. Med 24, 512 (1958).

    Article  PubMed  CAS  Google Scholar 

  220. Gronert, G. A., Dotin, L. N., Ritchey, C. R., and Mason, A. D., Jr., Succinyl-choline-induced hyperkalemia in burned patients. II. Anesth. Analg. (Cleveland) 48, 958 (1969).

    CAS  Google Scholar 

  221. Gurtner, T., Kreutzberg, G., and Doenicke, A., Comparative studies on cholinesterase activity in serum and liver cells. Acta Anaesthesiol. Scand7, 69 (1963).

    Article  PubMed  CAS  Google Scholar 

  222. Hardegg, W., Rieken, E., and Schmalz, H., Uber die Kinetik der Benzoyl-cholinspaltung durch die Serum-Cholinesterase und ihre Beeinflussung durch Cholin. Biochem. Z.324, 115 (1953).

    PubMed  CAS  Google Scholar 

  223. Harris, H., and Whittaker, M., Differential inhibition of human serum cholinesterase with fluoride: Recognition of two new phenotypes. Nature (London) 191, 496 (1961).

    Article  CAS  Google Scholar 

  224. Harris, H., Hopkinson, D. A., and Robson, E. B., Two-dimensional electrophoresis of pseudocholinesterase components in human serum. Nature (London) 196, 1296 (1962).

    Article  CAS  Google Scholar 

  225. Harris, H., Hopkinson, D. A., Robson, E. B., and Whittaker, M., Genetical studies on a new variant of serum cholinesterase detected by electrophoresis. Ann. Hum. Genet. 26, 359 (1963).

    Article  PubMed  CAS  Google Scholar 

  226. Harris, H., Hopkinson, D. A., and Robson, E. B., Two-dimensional electrophoresis of pseudocholinesterase components in human serum. Nature (London) 196, 1296 (1962).

    Article  CAS  Google Scholar 

  227. Harris, L. W., Fleisher, J. H., Clark, J., and Cliff, W. J., Dealkylation and loss of capacity for reactivation of cholinesterase inhibited by saran. Science 154, 404 (1966).

    Article  PubMed  CAS  Google Scholar 

  228. Haupt, H., Heide, K., Zwisler, O., and Schwick, H. G., Isolierung und physikalisch-chemische charakterisierung der Cholinesterase aus Human serum. Blut 14, 65 (1966).

    Article  PubMed  CAS  Google Scholar 

  229. Hazard, R., Comec, A., and Pignard, P., La dihydrooxycodéinone activateur de la procainestérase. C. R. Seances Soc. Biol. Ses Fil. 144, 356 (1950).

    PubMed  CAS  Google Scholar 

  230. Hazard, R., Uriel, J., and Larno, S., Apparente identité de la cholinesterase et de la procainesterase sériques d’origine humaine. J. Physiol. (Paris) 59, 5 (1967).

    CAS  Google Scholar 

  231. Heath, D. F., “Organophosphorus Poisons-Anticholinesterases and Related Compounds,” 1st ed. Pergamon, Oxford, 1961.

    Google Scholar 

  232. Heath, D. F., The toxic action of some phosphorus anticholinesterases with cationic groups. Biochem. Pharmacol. 6, 244 (1961).

    Article  PubMed  CAS  Google Scholar 

  233. Hebb, C., Formation, storage, and liberation of acetylcholine. In “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), p. 55. Springer-Verlag, Heidelberg, Berlin, New York, 1963.

    Google Scholar 

  234. Hebb, C., Biosynthesis of acetylcholine in nervous tissue. Physiol. Rev. 52, 918 (1972).

    PubMed  CAS  Google Scholar 

  235. Hebb, C. O., and Smallman, B N, Intracellular distribution of choline acetylase. J. Physiol. (London) 134, 385 (1956).

    CAS  Google Scholar 

  236. Hebb, C. O., and Waites, G. M., Choline acetylase in antero-and retrograde degeneration of a cholinergie neuron. J. Physiol. (London) 132, 667 (1956).

    CAS  Google Scholar 

  237. Hebb, C. O., and Whittaker, V. P., Cellular distributions of acetylcholine and choline acetylase. J. Physiol. (London) 142, 187 (1958).

    CAS  Google Scholar 

  238. Heilbronn, E., Purification of cholinesterase from horse serum. Biochim. Biophys. Acta 58, 222 (1962).

    Article  PubMed  CAS  Google Scholar 

  239. Heilbronn, E., In vitro reactivation and “ageing” of tabun-inhibited blood cholinesterases. Studies with N-methyl pyridinium-2-aldoxime methane sulphonate and N,N’-trimethylene bis (pyridinium-4-aldoxime) dibromide. Biochem. Pharmacol. 12, 25 (1963).

    Article  PubMed  CAS  Google Scholar 

  240. Heilbronn, E., Phosphorylated cholinesterases, their formation, reactions and induced hydrolysis. Sven. Kern. Tidskr.77, 11 (1965).

    Google Scholar 

  241. Heilbronn, E., and Tolagen, B., Toxogenin in satin, soman and tabun poisoning. Biochem. Pharmacol. 14, 73 (1965).

    Article  PubMed  CAS  Google Scholar 

  242. Heinecker, R., and Mayer, I., Das Verhalten der Serumcholinesterase nach Myokard-infarkt. Klin. Wochenschr. 35, 340 (1957).

    Article  PubMed  CAS  Google Scholar 

  243. Hemsworth, B. A., and Foldes, F. F., Preliminary pharmacological screening of styrylpyridine choline acetyltransferase inhibitors. Eur. J. Pharmacol. 11, 187 (1970).

    Article  PubMed  CAS  Google Scholar 

  244. Herschberg, A. D., and Frommel, F., Cholinesterase sérique et glandes sexuelles. Annea Endocrinol. 9, 117 (1948).

    CAS  Google Scholar 

  245. Hirano, A., and Dembitzer, H. M., Cerebellar alterations in the Weaver mouse. J. Cell Biol. 56, 478 (1973).

    Article  PubMed  CAS  Google Scholar 

  246. Hobbiger, F., Effect of nicotinhydroxamic acid methiodide on human plasma cholinesterase inhibited by organophosphate containing a dialkylphosphate group. Br. J. Pharmacol. Chemother. 10, 356 (1955).

    PubMed  CAS  Google Scholar 

  247. Hobbiger, F., Chemical reactivation of phosphorylated human and bovine true cholinesterase. Br. J. Pharmacol. Chemother. 11, 295 (1956).

    PubMed  CAS  Google Scholar 

  248. Hobbiger, F., The inhibition of organophosphorus compounds and its reversal. Proc. R. Soc. Med 54, 403 (1961).

    PubMed  CAS  Google Scholar 

  249. Hobbiger, F., and Vojvodic, V., The reactivating and antidotal actions of N,N’-trimethylenebis(pyridinium-4-aldoxime)(TMB-4) and N,N’ -oxydimethyl-enebis(pyridinium-4aldoxime) (toxogenin) with particular reference to their effect on phosphorylated acetylcholinesterase in brain. Biochem. Pharmacol. 15, 1677 (1966).

    Article  CAS  Google Scholar 

  250. Hobbiger, F., O’Sullivan, D. G., and Sadler, P. W., New potent reactivators of acetocholinesterase inhibited by tetraethyl pyrophosphate. Nature (London) 182, 1672 (1958).

    Article  CAS  Google Scholar 

  251. Hofstee, B. H. J., Spectrophotometric determinations of esterases. Science 114, 128 (1951).

    Article  PubMed  CAS  Google Scholar 

  252. Hokin, L. E., and Hokin, M. R., The role of phosphatidic acid and phosphoionositide in transmembrane transport elicited by acetylcholine and other humoral agents. Int. Rev. Neurobiol. 2, 99 (1960).

    Article  PubMed  CAS  Google Scholar 

  253. Hokin, M. R., Hokin, L. E., and Shelp, W. D., The effects of acetylcholine on the turnover of phosphatidic acid and phosphoinositide in sympathetic ganglia, and in various parts of the central nervous system in vitro. J. Gen. Physiol. 44, 217 (1960).

    Article  PubMed  CAS  Google Scholar 

  254. Holle, F., and Doenicke, A., Cholinesterase in der Chirurgie. Ergeb. Chir. Orthop. 43, 77 (1961).

    PubMed  CAS  Google Scholar 

  255. Holmstedt, B., A modification of the thiocholine method for the determination of cholinesterase. I. Biochemical evaluations of selective inhibitors. Acta Physiol. Scand 40, 322 (1957).

    Article  PubMed  CAS  Google Scholar 

  256. Hoskin, F. C. G., Sterospecificity in the reactions of acetylcholinesterase. Proc. Soc. Exp. Biol. Med. 113, 320 (1963).

    PubMed  CAS  Google Scholar 

  257. Hoskin, F. C. G., and Trick, G. S., Stereospecificity in the enzymatic hydrolysis of tabun and acetyl-methylcholine chloride. Can. J. Biochem. Physiol. 33, 963 (1955).

    Article  PubMed  CAS  Google Scholar 

  258. Hunt, R., Note on a blood pressure lowering body in the suprarenal gland. Am J. Physiol. 3, 18 (1900).

    Google Scholar 

  259. Hunt, R., Further observations on the blood-pressure-lowering bodies in extracts of the suprarenal glands. Am. J. Physiol. 5, 6 (1901).

    Google Scholar 

  260. Hunt, R., Some physiological actions of the homocholins and of some of their derivatives. J. Pharmacol. Exp. Ther. 6, 477 (1915).

    CAS  Google Scholar 

  261. Hunt, R., and Taveau, R. DeM., On the physiological action of certain cholin derivatives and new methods for detecting cholin. Br. Med. J. 2, 1788 (1906).

    Article  Google Scholar 

  262. Hunt, R., and Taveau, R. DeM., The effects of a number of derivatives of choline and analogous compounds on the blood pressure. U. S. Public Health Mar. Hosp. Serv. Hyg. Lab. Bull. 73, 1 (1911).

    Google Scholar 

  263. Hunter, A. R., Tension: A new anticurare agent. Br. J. Anaesth. 24, 175 (1952).

    Article  PubMed  CAS  Google Scholar 

  264. Irwin, R. L., and Hein, M. M., The substrate specificity of atypical cholinesterase in relation to phenotypes. Biochem. Pharmacol.15, 145 (1966).

    Article  PubMed  CAS  Google Scholar 

  265. Jaffe, M. J., Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine. Plant Physiol. 46, 768 (1970).

    Article  PubMed  CAS  Google Scholar 

  266. Jandorf, B. J., Michel, H. O., Schaffer, N. K., Egan, R., and Summerson, W. H., The mechanism of reaction between esterases and phosphorus-containing anti-esterases. Discuss. Faraday Soc. 20, 134 (1955).

    Article  Google Scholar 

  267. Jandorf, B. J., Crowell, E. A., and Levin, A. P., Role of hydroxamic acids in prevention and reversal of cholinesterase inactivation by DFP and sann. Fed Proc., Fed. Am. Soc. Exp. Biol. 14, 231 (1955).

    Google Scholar 

  268. Jansz, H. S., and Cohen, J. A., Pseudocholinesterase from horse serum. I. Purification and properties of the enzyme. Biochim. Biophys. Acta 56, 531 (1962).

    Article  PubMed  CAS  Google Scholar 

  269. Jansz, H S, Oosterbaan, R. A., Berends, F., and Cohen, J. A., Studies on the active site of esterases. In “Molecular Basis of Enzyme Action and Inhibition” (P. A. E. Desnuelle, ed.), 1st ed., p. 45. Pergamon, Oxford, 1963.

    Google Scholar 

  270. Jenkins, T., Balinsky, D., and Patient, D. W., Cholinesterase in plasma: First reported absence in the Bantu: Half-life determination. Science 156, 1748 (1967).

    Article  PubMed  CAS  Google Scholar 

  271. Jondorf, W. R., Maickel, R. P., and Brodie, B. B., Inability of newborn mice and guinea pigs to metabolize drugs. Biochem. Pharmacol. 1, 352 (1959).

    Article  Google Scholar 

  272. Jung, M. J., and Belleau, B., Purification and fractionation of acetyl-cholinesterase into subspecies by affinity chromatography on a d-tubocurarine-sepharose column. Mol. Pharmacol. 6, 589 (1972).

    Google Scholar 

  273. Juul, P., Human plasma cholinesterase isoenzymes. Clin. China Acta 19, 205 (1968).

    Article  CAS  Google Scholar 

  274. Kabachnik, M. I., Brestkin, A. P., Godovikov, N. N., Michelson, M. J., Rozengart, E. V., and Rozengart, V. I., Hydrophobic areas on the active surface of cholinesterases. Pharmacol. Rev. 22, 355 (1970).

    PubMed  CAS  Google Scholar 

  275. Kaita, A. A., and Goldberg, A. M., Control of acetylcholine synthesis-the inhibition of choline acetyltransferase by acetylcholine. J. Neurochem. 16, 1185 (1969).

    Article  PubMed  CAS  Google Scholar 

  276. Kalow, W., Hydrolysis of local anesthetics by human serum cholinesterase. J. Pharmacol. Exp. Ther. 104, 122 (1952).

    PubMed  CAS  Google Scholar 

  277. Kalow, W., Familial incidence of low pseudocholinesterase level. Lancet 2, 576 (1956).

    Article  Google Scholar 

  278. Kalow, W., Cholinesterase types. Biochem. Hum. Genet., Ciba Found Symp. 1959p. 39 (1959).

    Google Scholar 

  279. Kalow, W., and Davies, R. O., The activity of various esterase inhibitors towards atypical human serum cholinesterase. Biochem. Pharmacol. 1, 183 (1959).

    Article  Google Scholar 

  280. Kalow, W., and Genest, K., Method for detection of atypical forms of human serum cholinesterases: Determination of dibucaine numbers. Can. J. Biochem. Physiol. 35, 339 (1957).

    Article  PubMed  CAS  Google Scholar 

  281. Kalow, W., and Gunn, D. R., Some statistical data on atypical cholinesterase of human serum. Ann. Hum. Genet. 23, 239 (1959).

    Article  PubMed  CAS  Google Scholar 

  282. Kalow, W., and Lindsay, H., Abnormal behavior of human serum cholinesterase. J. Pharmacol. Exp. Ther. 116, 34 (1956).

    Google Scholar 

  283. Kalow, W., and Staron, N., On distribution and inheritance of atypical forms of human serum cholinesterase as indicated by dibucaine numbers. Can. J. Biochem. Physiol. 35, 1305 (1957).

    Article  PubMed  CAS  Google Scholar 

  284. Kalow, W., Genest, K., and Staron, N., Qualitative variation of serum cholinesterase activity in man as defined by dibucaine numbers. Fed Proc., Fed Am. Soc. Exp. Biol. 15, 444 (1956).

    Google Scholar 

  285. Kamijo, K., and Koelle, G. B., The histochemical localization of specific cholinesterase in the conduction system of beef heart. J. Pharmacol. Exp. Ther. 113, 30 (1955).

    Google Scholar 

  286. Kaplan, E., Herz, F., and Hsu, K. S., Erythrocyte acetylcholinesterase activity in ABO hemolytic disease of the newborn. Pediatrics33, 205 (1964).

    PubMed  CAS  Google Scholar 

  287. Karczmar, A. G., Ontogenesis of cholinesterases. In “Cholinesterases and Anti-cholinesterase Agents” (G. B. Koelle, ed.), p. 129. Springer-Verlag, Berlin, 1963.

    Google Scholar 

  288. Karczmar, A. G., Discussion of paper by Nachmansohn, D. Molecular forces controlling bioelectric currents in membranes. In “Nerve as a Tissue” (K. Rodahi, ed.), p. 273. Harper (Hoeber), New York, 1966.

    Google Scholar 

  289. Karczmar, A. G., Central cholinergic pathways and their behavioral implications. In “Principles of Psychopharmacology” (W. G. Clark et al., eds.), p. 57. Academic Press, New York, 1970.

    Google Scholar 

  290. Karczmar, A. G., History of the research with anticholinesterase agents. In “Anti-cholinesterase Agents” (A. G. Karczmar, ed.), Int. Encycl. Pharmacol. Ther., Sect. 13, Vol. I, p. 1. Pergamon, Oxford, New York, 1970.

    Google Scholar 

  291. Karlin, A., The association of acetylcholinesterase and membrane in subcellular fractions of the electric tissue of electrophorus. J. Cell Biol. 25, 159 (1965).

    Article  PubMed  CAS  Google Scholar 

  292. Karlin, A., Chemical distinctions between acetylcholinesterase and the acetylcholine receptor. Biochim. Biophys. Acta 139, 358 (1967).

    PubMed  CAS  Google Scholar 

  293. Karlin, A., and Winnik, M., Reduction and specific alkylation of the receptor for acetylcholine. Proc. Natl. Acad Sci. U.S.A. 60, 668 (1968).

    Article  PubMed  CAS  Google Scholar 

  294. Kasa, P., and Csernovsky, E., Electron microscopic localization of acetylcholinesterase in the superior cervical ganglion of the rat. Acta Histochem. 28, 274 (1967).

    PubMed  CAS  Google Scholar 

  295. Kasa, P., and Csillik, B., Electron microscopic localization of cholinesterase by a copper-lead-thiocholine technique. J. Neurochem. 13, 1345 (1966).

    Article  PubMed  CAS  Google Scholar 

  296. Kasa, P., Mann, S. P., and Hebb, C., Localization of choline acetyltransferase. Nature (London) 226, 812 (1970).

    Article  CAS  Google Scholar 

  297. Kato, G., Acetylcholinesterase I. A study by nuclear magnetic resonance of the binding of inhibitors to the enzyme. Mol. Pharmacol. 8, 575 (1972).

    PubMed  CAS  Google Scholar 

  298. Kato, G., Acetylcholinesterase II. A study by nuclear magnetic resonance of the acceleration of acetylcholinesterase by atropine and inhibition by eserine. Mol. Pharmacol. 8, 582 (1972).

    PubMed  CAS  Google Scholar 

  299. Katz, B., “Nerve, Muscle and Synapse.” McGraw-Hill, New York, 1966.

    Google Scholar 

  300. Kaulla, von K., and Holmes, J. H., Changes following anticholinesterase exposures. Blood coagulation studies. Arch. Environ. Health 2, 168 (1961).

    Google Scholar 

  301. Klein, H., Gärtner, K., and Günther, R., Die Variante C5 der Cholinesterasen des Serums. Dtsch. Z. Gesamte Gerichtl. Med 61, 137 (1967).

    Article  Google Scholar 

  302. Kloot, W. G. Van der, The effect of enzyme inhibitors on the resting potential and on the ion distribution of the sartorius muscle of the frog. J. Gen. Physiol. 41, 879 (1958).

    Article  Google Scholar 

  303. Klupp, H., and Kraupp, O., Uber die freisetzung von Kalium aus der Muskalatus unter der Einwirkung einiger Muskelrelaxantien. Arch. Int. Pharmacodyn. Ther. 98, 340 (1954).

    PubMed  CAS  Google Scholar 

  304. Koelle, G. B., The histochemical differentiation of types of cholinesterases and their localizations in tissues of the cat. J. Pharmacol. Exp. Ther. 100, 158 (1950).

    PubMed  CAS  Google Scholar 

  305. Koelle, G. B., The elimination of enzymatic diffusion artifacts in the histochemical localization of cholinesterases and a survey of their distributions. J. Pharmacol. Exp. Ther. 103, 153 (1951).

    PubMed  CAS  Google Scholar 

  306. Koelle, G. B., ed., “Cholinesterases and Anticholinesterase Agents.” Springer-Verlag, Heidelberg, Berlin, New York, 1963.

    Google Scholar 

  307. Koelle, G. B., Cytological distributions and physiological functions of Cholinesterases. In “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), p. 187. Springer-Verlag, Heidelberg, Berlin, New York, 1963.

    Google Scholar 

  308. Koelle, G. B., The neurohumoral theory. In “Nerve as a Tissue” (K. Rodahl, ed.), p. 287. Harper (Hoeber), New York, 1966.

    Google Scholar 

  309. Koelle, G. B., Part I. Correlations between ultrastructures, cytochemistry and function at the synapse. Current concepts of synaptic structure and function. Ann. N. Y. Acad Sci. 183, 5 (1971).

    Article  PubMed  CAS  Google Scholar 

  310. Koelle, G. B., Acetylcholine-current status in physiology, pharmacology and medicine. N. Engl. J. Med. 286, 1086 (1972).

    Article  PubMed  CAS  Google Scholar 

  311. Koelle, G. B., Davis, R., and Smyrl, E. G., New findings concerning the localization by electron microscopy of acetylcholinesterase in autonomic ganglia. Prog. Brain Res. 34, 371 (1971).

    Article  CAS  Google Scholar 

  312. Koelle, W. A., and Koelle, G. B., The localization of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J. Pharmacol. Exp. Ther. 126, 1 (1959).

    PubMed  CAS  Google Scholar 

  313. Koenig, E., and Koelle, G. B., Acetyicholinesterase in cholinergic neurons following irreversible inactivation. J. Neurochem.8, 169 (1961).

    Article  PubMed  CAS  Google Scholar 

  314. Kondritzer, A. A., Zvirblis, P., Goodman, A., and Paplanus, S. H., Blood plasma levels and elimination of salts of 2-PAM in man after oral administration. J. Pharm. Sci. 57, 1142 (1968).

    Article  PubMed  CAS  Google Scholar 

  315. Korolkovas, A., “Essentials of Molecular Pharmacology. Background for Drug Design” p. 205. Wiley (Interscience), New York, 1970.

    Google Scholar 

  316. Köver, A., Kónya, L., Kovacs, L., and Szöör, A., Positive isotropic action of cholinesterase on the hypodynamic frog heart. Acta Physiol. Acad Sci. Hung. 22, 145 (1962).

    PubMed  Google Scholar 

  317. Kramer, T., Preliminary report on the innervation of the embryonic chick heart. Anat. Rec. 106, 210 (1950).

    Google Scholar 

  318. Krupka, R. M., Fluoride inhibition of acetylcholinesterase. Mol. Pharmacol. 2, 558 (1966).

    PubMed  CAS  Google Scholar 

  319. Krupka, R. M., and Laidler, K. J., Molecular mechanisms for hydrolytic enzyme action. I. Apparent non-competitive inhibition, with special reference to acetylcholinesterase. II. Inhibition of acetylcholinesterase by excess substrate. III. A general mechanism for the inhibition of acetylcholinesterase. IV. The structure of the active center and the reaction mechanism. J. Am. Chem. Soc.83, 1445 (1961).

    Article  CAS  Google Scholar 

  320. Kupfer, C., and Koelle, G. B., A histochemical study of cholinesterase during formation of the motor and plate of the albino rat. J. Exp. Zool. 116, 397 (1951).

    Article  PubMed  CAS  Google Scholar 

  321. Kurokawa, M., Machijama, Y., and Kato, M., Distribution of acetylcholine in the brain during various states of activity. J. Neurochem. 10, 341 (1963).

    Article  PubMed  CAS  Google Scholar 

  322. Lakos, T., Csinady, L., and Kovacs, T., Die Rolle der Cholinesterase im Kationentrsnsport des muskels. Acta Physiol. Acad. Sci. Hung. 16, Suppl. 44 (1959).

    Google Scholar 

  323. La Motta, R. V., McComb, R. B., Noll, C. R., Jr., Wetstone, H. J., and Reinfrank, R. F., Multiple forms of serum cholinesterase. Arch. Biochem. Biophys. 124, 299 (1968).

    Article  Google Scholar 

  324. Lawler, H. C., Turnover time of acetylcholinesterase. J. Biol. Chem. 236, 2296 (1961).

    PubMed  CAS  Google Scholar 

  325. Lehmann, H., and Liddell, J., Genetical variants of human serum pseudocholinesterase. Prog. Med. Genet. 3, 75 (1964).

    CAS  Google Scholar 

  326. Lehmann, H., and Ryan, E., The familial incidence of low pseudocholinesterase level. Lancet 2, 124 (1956).

    Article  Google Scholar 

  327. Lehmann, H., Liddell, J., Blackwell, B., O’Connor, D. C., and Daws, A. V., Two further serum pseudocholinesterase phenotypes as causes of suxamethonium apnoea. Br. Med J. 1, 1116 (1963).

    Article  PubMed  CAS  Google Scholar 

  328. Lehmann, H., Patson, V., and Ryan, E., The inheritance of an idiopathic low plasma pseudocholinesterase level. J. Clin. Pathol. 11, 554 (1958).

    Google Scholar 

  329. Lehmann, H., Silk, E., and Liddell, J., Pseudo-cholinesterase. Br. Med. Bull17, 230 (1961).

    PubMed  CAS  Google Scholar 

  330. Leopold, I. H., and Krishna, N., Local use of anticholinesterase agents in ocular therapy. In “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), p. 1051. Springer-Verlag, Berlin, 1963.

    Google Scholar 

  331. Leuzinger, W., Structure and function of acetylcholinesterases. Prog. Brain Res. 31, 241 (1969).

    Article  PubMed  CAS  Google Scholar 

  332. Leuzinger, W., The number of catalytic sites in acetylcholinesterase. Biochem. J. 123, 139 (1971).

    PubMed  CAS  Google Scholar 

  333. Leuzinger, W., and Baker, A. L., Acetylcholinesterase, I. Large scale purification, homogeneity and amino acid analysis. Proc. Natl. Acad Sci. U. S. A.57, 446 (1967).

    Article  PubMed  CAS  Google Scholar 

  334. Leuzinger, W., Baker, A. L., and Cauvin, E., Acetylcholinesterase. II. Crystallization, absorption spectra, isoionic point. Proc. Natl. Acad Sci. U. S. A. 59, 620 (1968).

    Article  PubMed  CAS  Google Scholar 

  335. Leuzinger, W., Goldberg, M., and Cauvin, E., Molecular properties of acetylcholinesterases. J. Mol. Biot. 40, 217 (1969).

    Article  CAS  Google Scholar 

  336. Leuzinger, W., Goldberg, M., and Cauvin, E., Molecular properties of acetyl-cholinesterase. J. Mol. Biol. 40, 365 (1969).

    Article  Google Scholar 

  337. Leuzinger, W., and Schneider, M., Acetylcholine-induced excitation on bilayers. Experientia 28, 256 (1972).

    Article  PubMed  CAS  Google Scholar 

  338. Levine, M. G., and Hoyt, R. E., Serum cholinesterase in some pathological conditions. Proc. Soc. Exp. Biol. Med 70, 50 (1949).

    PubMed  CAS  Google Scholar 

  339. Levine, M. G., and Hoyt, R. E., The relationship between human serum cholinesterase and serum albumin. Science 111, 286 (1950).

    Article  PubMed  CAS  Google Scholar 

  340. Lewis, P. R., and Shute, C. C. D., The distribution of cholinesterase in cholinergie neurons demonstrated with the electron microscope. J. Cell Sci. 1, 381 (1966).

    PubMed  CAS  Google Scholar 

  341. Liddell, J., Lehmann, H., and Silk, E., A “silent” pseudocholinesterase gene. Nature (London) 193, 561 (1962).

    Article  CAS  Google Scholar 

  342. Liddell, J., Lehmann, H., Davies, D., and Sharih, A., Physical separation of pseudo-cholinesterase variants in human serum. Lancet 1, 463 (1962).

    Article  PubMed  CAS  Google Scholar 

  343. Liddell, J., Newman, G. E., and Brown, D. F., A pseudocholinesterase variant in human tissues. Nature (London) 198, 1090 (1963).

    Article  CAS  Google Scholar 

  344. Loewi, O., Uber humorale übertragbarkeit der Herzenervenwirkung. I. Mitteilung. Pfluegers Arch. Gesamte Physiol…Menschen Tiere 189, 239 (1921).

    Article  Google Scholar 

  345. Loewi, O., and Mansfield, G., Uber den Wirkungsmodus des Physostigmins. Arch. Exp. Pathol. Pharmakol. 62, 180 (1910).

    Article  Google Scholar 

  346. Loewi, O., and Navratil, E., Uber humorale Ubertragbarkeit der Herzenervenwirkung. X. Uber das Schicksal des Vagusstoffes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 214, 678 (1926).

    Article  CAS  Google Scholar 

  347. Long, J. P., Structure-activity relationships of the reversible anti-cholinesterase agents. In “Cholinesterases and Anti-cholinesterase Agents” (G. B. Koelle, ed.), p. 374. Springer-Verlag, Heidelberg, Berlin, New York, 1963.

    Google Scholar 

  348. Lüttringhaus, A., and Hagedorn, I., Quartare Hydroxyiminomethylpyridiniumsalze. Das Dichlorid des Bis-[4-hydroxylminomethylpyridinium-(1)-methyl]-ather (“Lüth 6”) ein neuer Reaktivator der durch organische Phosphorsaureester gehemten Acetyl-cholinesterase. Arzneim-Forsch 14, 1 (1961).

    Google Scholar 

  349. Macfarlane, D. W., Pelikan, E. W., and Unna, K. R., Evaluation of curarizing drugs in man V Antagonism to curarizing effects of d-tubocurarine by neostigmine m-hydroxy phenyltrimethylammonium and m-hydroxy phenylethyldimethylammonium. J. Pharmacol. Exp. Ther. 100, 382 (1950).

    PubMed  CAS  Google Scholar 

  350. McIsaac, R. J., and Koelle, G. B., Comparison of the effects of inhibition of external, internal, and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. Exp. Ther. 126, 9 (1959).

    PubMed  CAS  Google Scholar 

  351. Maier, E. H., and Fischer, R., Serum-cholinesterase-aktivitat und Lebermorphologie. Klin. Wochenschr. 32, 566 (1954).

    Article  PubMed  CAS  Google Scholar 

  352. Main, A. R., Affinity and phosphorylation constants for the inhibition of esterases by organophosphates. Science 144, 992 (1964).

    Article  PubMed  CAS  Google Scholar 

  353. Malmström, B. G., Levin, O., and Boman, H. G.; Chromatrography of human serum cholinesterase. Acta Chem. Scand. 10, 1077 (1956).

    Article  Google Scholar 

  354. Malthe-Sørensen, D., and Fonnum, F., Multiple forms of choline acetyltransferase from rat brain. Nature (London) New Biol. 229, 127 (1971).

    Article  Google Scholar 

  355. Malthe-Sirenson, D., and Fortnum, F., Multiple forms of choline acetyltransferase in several species demonstrated by isoelectric focusing. Biochem. J. 127, 229 (1972).

    Google Scholar 

  356. Manner, G., Foldes, F. F., Kuleba, M., and Decry, A. M., Morphine tolerance in a human neuroblastoma line: Changes in choline acetylase and cholinesterase activities. Experientia 30, 137 (1974).

    Article  PubMed  CAS  Google Scholar 

  357. Manner, G., Hirano, A., Dembitzer, H. M., and Foldes, F. F., unpublished data.

    Google Scholar 

  358. Markert, C. L., and Miller, F., Multiple forms of enzymes: Tissue, ontogenetic and species specific patterns. Proc. Natl. Acad Sci. U. S. A. 45, 753 (1959).

    Article  PubMed  CAS  Google Scholar 

  359. Massoulié, J., and Rieger, F., L’acétylcholinésterase des organes électriques de poissons (torpille et gymnote); complexes membranaires Eur. J. Biochem. 11, 441 (1969).

    Article  PubMed  Google Scholar 

  360. Mayrhofer, O., Die Nebenwirkungen des Succinylcholins und ihre Verhuetung. Curare Curare-like Agents, Proc. Int. Symp.1958 p. 376.

    Google Scholar 

  361. McCance, R. A., Hutchinson, A. O., Dean, R. F. A., and Jones, P. E. H., The cholinesterase activity of the serum of newborn animals and of colostrum. Biochem. J. 45, 493 (1949).

    PubMed  CAS  Google Scholar 

  362. Mendel, B., and Rudney, H., Studies on cholinesterase; cholinesterase and pseudo-cholinesterase. Biochem. J. 37, 59 (1943).

    PubMed  CAS  Google Scholar 

  363. Mendel, B., Mundell, D. B., and Rudney, H., Studies on cholinesterase. III. Specific tests for true cholinesterase and pseudo-cholinesterase. Biochem. J. 37, 473 (1943).

    PubMed  CAS  Google Scholar 

  364. Mengle, D. C., and O’Brien, R. D., The spontaneous and induced recovery of fly-brain cholinesterase after inhibition by organophosphates. Biochent J. 75, 201 (1960).

    CAS  Google Scholar 

  365. Merrill, G. G., Neostigmine toxicity. Report of fatality following diagnostic test for myasthenia. J. Am. Med Assoc. 137, 362 (1948).

    PubMed  CAS  Google Scholar 

  366. Metzger, H. P., and Wilson, I. B., The acceleration of the acetylcholinesterase catalyzed hydrolysis of acetyl fluoride. Biochem. Biophys. Res. Commun. 28, 263 (1967).

    Article  PubMed  CAS  Google Scholar 

  367. Michaelson, I. A., The subcellular distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in nerve tissue. Ann. N. Y. Acad Sci. 144, 387 (1967).

    Article  PubMed  CAS  Google Scholar 

  368. Michel, H. O., Development of resistance of alkylphosphorylated cholinesterase to reactivation by oximes. Fed. Proc., 17, 275 (1958).

    Google Scholar 

  369. Mitchell, J. F., The spontaneous and evoked release of acetylcholine from the cerebral cortex. J. Physiol. (London) 165, 98 (1963).

    CAS  Google Scholar 

  370. Mitchell, J. F., Acetylcholine release from the brain. In “Mechanisms of Release of Biogenic Amines” (U. S. von Euler, S. Rosell, and B. Uvnäs, eds.), p. 425. Pergamon, Oxford, 1966.

    Google Scholar 

  371. Morishima, H. O., Daniel, S. S., Finster, M., Poppers, P. J., and James, L. S., Transmission of mepivacaine hydrochloride (carbocaine) across the human placenta. Anesthesiology 27, 147 ( 1966

    Article  PubMed  CAS  Google Scholar 

  372. Morris, D., and Grewaal, D. S., Isotopic exchange between acetylcholine and [Me-14C] choline catalyzed by human placental choline acetyltransferase. Biochem. J. 114, 85P (1969).

    PubMed  CAS  Google Scholar 

  373. Morris, D., and Grewaal, D. S., Human placental choline acetyltransferase. Eur. J. Biochem. 22, 563 (1971).

    Article  PubMed  CAS  Google Scholar 

  374. Motulsky, A. G., Pharmacogenetics. Prog. Med. Genet. 3, 49 (1964).

    CAS  Google Scholar 

  375. Mounter, L. A., Alexander, H. C., and Tuck, K. D., The pH dependence and dissociation constants of esterases and proteases treated with diisopropyl fluorophosphate. J. Biol. Chem. 226, 867 (1957).

    PubMed  CAS  Google Scholar 

  376. Mundell, D. B., Plasma cholinesterase in male and female rats. Nature (London) 153, 557 (1944).

    Article  CAS  Google Scholar 

  377. Muralt, A. von, Observations on chemical wave transmission in excited nerve. Proc. R. Soc. London 123, 397 (1937).

    Article  Google Scholar 

  378. Murait, A. von, Lotmar, W., and Wildbrandt, W., Physikalischchemische Messungen an Nervenextrakten. Nachweis einer Aktionssubstanz der Nervenerregung. Proc. Int. Physiol. Congr., 16th2, 924 (1938).

    Google Scholar 

  379. Myers, D. K., Differentiation of three types of competitive cholinesterase inhibitors. Arch. Biochem. 31, 29 (1951).

    Article  PubMed  CAS  Google Scholar 

  380. Myers, D. K., Effect of salt on the hydrolysis of acetylcholine by cholinesterases. Arch. Biochem. 37, 469 (1952).

    Article  PubMed  CAS  Google Scholar 

  381. Nachmansohn, D, Action of ions on choline esterase. Nature (London) 145, 513 (1940).

    Article  CAS  Google Scholar 

  382. Nachmansohn, D., “Chemical and Molecular Basis of Nerve Activity.” Academic Press, New York, 1959.

    Google Scholar 

  383. Nachmansohn, D., Choline acetylase. In “Cholinesterases and Anticholinesterase Agents” (G. B. Koelle, ed.), p. 40. Springer-Verlag, Heidelberg, Berlin, New York, 1963.

    Google Scholar 

  384. Nachmansohn, D., Chemical control of the permeability cycle in excitable membranes during activity. Is. J. Med Sci. 1, 1201 (1965).

    CAS  Google Scholar 

  385. Nachmansohn, D., Chemical control of the permeability cycle in excitable membranes during electrical activity. Ann. N. Y. Acad Sci. 137, 877 (1966).

    Article  PubMed  CAS  Google Scholar 

  386. Nachmansohn, D., Chemical forces controlling permeability changes of excitable membranes during electrical activity. In “Nerve as a Tissue” (K. Rodahl, ed.), p. 141. Harper (Hoeber), New York, 1966.

    Google Scholar 

  387. Nachmansohn, D., Proteins of excitable membranes. J. Gen. Physiol. 54, 187S (1969).

    Article  CAS  Google Scholar 

  388. Nachmansohn, D., and Berman, M., Studies on choline acetylase; on preparation of the coenzyme and its effect on the enzyme. J. Biol. Chem. 165, 551 (1946).

    PubMed  CAS  Google Scholar 

  389. Nachmansohn, D., and Lederer, E., Sur la biochimie de la cholinesterase, préparation de l’enzyme, rôle des groupements-SH. Bull. Soc. Chico. Biol. 21, 797 (1939).

    CAS  Google Scholar 

  390. Nachmansohn, D., and Lederer, E., Sur quelques proprietés chimiques de la cholinesterase. C. Seances R. Soc. Biol. Ses. Fil. 130, 321 (1939).

    CAS  Google Scholar 

  391. Nachmansohn, D., and Machado, A. L., The formation of acetylcholine. A new enzyme “choline acetylase.” J. Neurophysiol. 6, 397 (1943).

    CAS  Google Scholar 

  392. Nachmansohn, D., and Rothenberg, M. A., Studies on cholinesterase. I. On the specificity of the enzyme in nerve tissue: J. Biol. Chem. 158, 653 (1945).

    CAS  Google Scholar 

  393. Nachmansohn, D., and Weiss, M. S., Studies on choline acetylase; effect of citric acid J. Biol. Chem. 172, 677 (1948).

    PubMed  CAS  Google Scholar 

  394. Neitlich, H. W., Increased plasma cholinesterase activity and succinylcholine resistance: A genetic variant. J. Clin. Invest. 45, 380 (1966).

    Article  PubMed  CAS  Google Scholar 

  395. Nishi, S., Soeda, H., and Koketsu, K., Release of acetylcholine from sympathetic preganglionic nerve terminals. J. Neurophysiol. 30, 114 (1967).

    CAS  Google Scholar 

  396. Nyhan, W. L., Toxicity of drugs in the neonatal period. J. Pediatr. 59, 1 (1961).

    Article  PubMed  CAS  Google Scholar 

  397. Oosterbaan, R. A., Constitution of DFP enzymes. In “Proceedings of the Conference on Structure and Reactions of DFP Sensitive Enzymes” (E. Heilbronn, ed.), p. 25. Swedish Research Institute of National Defence, Stockholm, 1967.

    Google Scholar 

  398. Oosterbaan, R. A., and Jansz, H. S., Cholinesterases, esterases and lipases. Compr. Biochem. 16, 1 (1965).

    Google Scholar 

  399. Oosterbaan, R. A., Jansz, H S, and Cohen, J. A., Studies with 180 on the mechanism of hydrolytic enzyme reactions. Abstr., Int. Congr. Biochem., 5th, Moscow, Aug. 10–16, 1961p. 119 (1963).

    Google Scholar 

  400. Ord, M. G., and Thompson, R. H. S., The distribution of cholinesterase types in mammalian tissues Biochem. J. 46, 346 (1950).

    PubMed  CAS  Google Scholar 

  401. Pantuck, E. J., Ecothiopate iodide eye drops and prolonged response to suxamethonium. Br. J. Anaesth. 38, 406 (1966).

    Article  PubMed  CAS  Google Scholar 

  402. Persson, B. O., Larsson, L., Schuberth, J., and Sörbo, B., 3-bromo-acetonyltrimethylammonium bromide, a choline acetylase inhibitor. Acta Chem. Scand 21, 2283 (1967).

    Article  PubMed  CAS  Google Scholar 

  403. Petty, C. S., Organic phosphate insecticide poisoning. Residual effects in two cases. Am. J. Med 24, 467 (1958).

    Article  PubMed  CAS  Google Scholar 

  404. Plattner, F., Der Nachweis der Vagusstoffes bein Saugetier. Pfluegers Arch. Gesamte Physiol. Menschen Tiere. 214, 112 (1926).

    Article  CAS  Google Scholar 

  405. Polak, R. L., An analysis of the stimulating action of atropine on release synthesis of acetyl choline in cortical slices from rat brain. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn, and A. Winter, eds.), p. 323. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  406. Poppers, P. J., and Finster, M., The use of prilocaine hydrochloride (Citanest) for epidural analgesia in obstetrics. Anesthesiology 29, 1134 (1968).

    Article  PubMed  CAS  Google Scholar 

  407. Potter, L. T., and Glover, V. A. S., Choline acetyltransferase from mammalian brains. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 75. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  408. Poziomek, E. J., Hackley, B. E., Jr., and Steinberg, G. M., Pyridinium aldoximes. J. Org. Chem. 23, 714 (1958).

    Article  CAS  Google Scholar 

  409. Richter, D., and Crossland, J., Variations in acetylcholine content of the brain with physiological state. Am. J. Physiol. 159, 247 (1949).

    PubMed  CAS  Google Scholar 

  410. Robertson, G. S., Serum cholinesterase deficiency. I. Disease and inheritance. Br. J. Anaesth. 38, 355 (1966).

    Article  PubMed  CAS  Google Scholar 

  411. Robins, G. S., Zsigmond, E. K., and Shanor, S. P., Plasma cholinesterase activity and the safe use of succinylcholine in cancer patients. P.esented at the 6th Annu. Meet. Am. Soc. Clin. Pharmacol. Chemother., Atlantic City, May 1–3 (1969).

    Google Scholar 

  412. Rosenberg, P., Kremzner, L. T., McCreery, D., and Willette, R. E., Inhibition of choline acetyltransferase activity in squid giant axon. Biochim. Biophys. Acta 268, 49 (1972).

    PubMed  CAS  Google Scholar 

  413. Rosner, V., Kepes, E. R., and Foldes, F. F., The effects of atropine and neostigmine on heart rate and rhythm. Br. J. Anaesth. 43, 1066 (1971).

    Article  PubMed  CAS  Google Scholar 

  414. Rothenberg, M. A., and Nachmansohn, D., Studies on cholinesterase. III. Purification of the enzyme from electric tissue by fractional ammonium sulfate precipitation. J. Biol. Chem. 168, 223 (1947).

    PubMed  CAS  Google Scholar 

  415. Salpeter, M. M., and Eldefrawi, M. E., Sizes of end plate compartments, densities of acetylcholine receptor and other quantitative aspects of neuromuscular transmission. J. Histochem. Cytochem. 21, 769 (1973).

    Article  PubMed  CAS  Google Scholar 

  416. Sastry, B. V. R., and Henderson, G. I., Kinetic mechanisms of human placental choline acetyltransferase. Biochem. Pharmacol 21, 787 (1972).

    Article  PubMed  CAS  Google Scholar 

  417. Sawyer, C. H., and Everett, J. W., Effects of various hormonal conditions in intact rat on synthesis of serum cholinesterase. Endocrinology 39, 307 (1946).

    Article  PubMed  CAS  Google Scholar 

  418. Sawyer, C. H., and Everett, J. W., Cholinesterases in rat tissues and the site of serum non-specific cholinesterase production. Ant J. Physiol. 148, 675 (1947).

    CAS  Google Scholar 

  419. Sawyer, C. H., and Hollinshead, W. H., Cholinesterases in sympathetic fibers and ganglia. J. Neurophysiol. 8, 137 (1945).

    CAS  Google Scholar 

  420. Scanlon, J. W., Brown, W. V., Jr., Weiss, J. B., and Alper, M. H., Neurobehavioral responses of newborn infants after maternal epidural anesthesia. Anesthesiology 40, 121 (1974).

    Article  PubMed  CAS  Google Scholar 

  421. Scanlon, J. W., Ostheimer, G. W., Lurie, A.O, Brown, W. V., Jr., Weiss, J. B., and Alper, M. H., Neurobehavioral responses and drug concentrations in newborns after maternal epidural anesthesia with bupivacaine. Anesthesiology 45, 400 (1976).

    Article  PubMed  CAS  Google Scholar 

  422. Schaffer, N. K., May, S. C., and Summerson, W. H., Serine phosphoric acid from diisopropylphosphoryl derivative of sel cholinesterase. J. Biol. Chem. 206, 201 (1954).

    PubMed  CAS  Google Scholar 

  423. Schaner, P. J., Brown, R. L., Kirksey, T. D., Gunther, R. C., Ritchey, C. R., and Gronert, G. A., Succinylcholine-induced hyperkalemia in burned patients. I. Anesth. Analg. (Cleveland) 48, 764 (1969).

    CAS  Google Scholar 

  424. Schubert, J., Choline acetyltransf erase; purification and effect of salts on the mechanism of the enzyme catalyzed reaction. Biochim. Biophys. Acta 122, 470 (1966).

    Google Scholar 

  425. Schuberth, J., Sparf, B., and Sundwall, A., A technique for the study of acetylcholine turnover in mouse brain in vivo. J. Neurochem. 16, 695 (1969).

    Article  PubMed  CAS  Google Scholar 

  426. Schuberth, J., Sparf, B., and Sundwall, A., On the turnover of acetylcholine in the brain. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 177. Försvarets Forskningsanstalt, Stockholm, 1970.

    Google Scholar 

  427. Shafai, T., and Cortner, J. A., Human erythrocyte acetylcholinesterase. II. Evidence for the modification of the enzyme by ion-exchange chromatography. Biochim. Biophys. Acta 250, 117 (1971).

    PubMed  CAS  Google Scholar 

  428. Shanor, S. P., Van Hees, G. R., Baart, N., Erdös, E. G., and Foldes, F. F., The influence of age and sex on human plasma-and red cell cholinesterase. Am. J. Med Sci. 242, 357 (1961).

    Article  CAS  Google Scholar 

  429. Sharkawi, M., Effects of some centrally acting drugs on acetylcholine synthesis by rat cerebral cortex slices. Br. J. Pharmacol. 46, 473 (1972).

    PubMed  CAS  Google Scholar 

  430. Shen, S. C., Changes in enzymatic patterns during development. In “The Chemical Basis of Development” (W. D. McElroy and B. Glass, eds.), p. 416. Johns Hopkins Press, Baltimore, Maryland, 1958.

    Google Scholar 

  431. Shnider, S. M., Serum cholinesterase activity during pregnancy, labor and puerperium. Anesthesiology 26, 335 (1965).

    Article  PubMed  CAS  Google Scholar 

  432. Shukuya, R., Kinetics of human blood cholinesterase. II. The temperature effect upon cholinesterase activity. J. Biochem. (Tokyo) 40, 135 (1953).

    CAS  Google Scholar 

  433. Silver, A., Cholinesterases of the central nervous system with special reference to the cerebellum. Int. Rev. NeurobioL. 10, 57 (1967).

    Article  PubMed  CAS  Google Scholar 

  434. Simpson, N. E. Polyacrylamide electrophoresis used for the detection of C5 + cholinesterase in Canadian caucasians, Indians and Eskimos. Am. J. Hum. Genet. 24, 317 (1972).

    PubMed  CAS  Google Scholar 

  435. Smith, J. C., and Deery, A. M., unpublished data (1966).

    Google Scholar 

  436. Smith, J. C., and Foldes, F. F.; An improved method for the recognition of atypical plasma cholinesterase. Anesthesiology 29, 211 (1968).

    Google Scholar 

  437. Smith, J. C., and Foldes, F. F., The recognition of atypical plasma cholinesterase by relative substrate hydrolysis rate. Biochim. Biophys. Acta 289, 352 (1972).

    PubMed  CAS  Google Scholar 

  438. Smith, J. C., Cavallito, C. J., and Foldes, F. F., The inhibition of choline acetylase (ChA) by bisquaternary ammonium compounds. Fed Proc. 25, 320 (1966).

    Google Scholar 

  439. Smith, J. C., Cavallito, C. J., and Foldes, F. F., Choline acetyltransferase inhibitors: A group of styrylpyridine analogs. Biochem. Pharmacol. 16, 2438 (1967).

    Article  PubMed  CAS  Google Scholar 

  440. Smith, J. C. Foldes, V. M., and Foldes, F. F., Distribution of cholinesterase in normal human muscle. Can. J. Biochem. PhysioL 41, 1713 (1963).

    Article  PubMed  CAS  Google Scholar 

  441. Stedman, E., and Stedman, E., The purification of choline-esterase. Biochem. J. 29, 2563 (1935).

    PubMed  CAS  Google Scholar 

  442. Stefenelli, N., Die Korrelation zwischen dem Albumingehalt und der Cholinesteraseaktivität des Blutserums und ihre Beurteilung bei Albuminverlust. Klin. Wochenschr. 39, 1019 (1961).

    Article  PubMed  CAS  Google Scholar 

  443. Stephenson, M., and Rowatt, E., The production of acetylcholine by a strain of Lactobacillus plantarum. J. Gen. Microbiol. 1, 280 (1947).

    Google Scholar 

  444. Strelitz, F., Studies on cholinesterase. IV. Purification of pseudocholinesterase from horse serum. Biochem. J. 38, 86 (1944).

    PubMed  CAS  Google Scholar 

  445. Surgenor, D. M., and Ellis, D., Preparation and properties of serum and plasma proteins, plasma cholinesterase. J. Am. Chem. Soc. 76, 6049 (1954).

    Article  CAS  Google Scholar 

  446. Svensmark, O., Molecular properties of cholinesterases. Acta Physiol. Scand 64, Suppl. 245: (1965).

    Google Scholar 

  447. Svensmark, O., and Heilbronn, E., Electrophoretic mobility of native and neuraminidase-treated horse-serum cholinesterase. Biochim. Biophys. Acta 92, 400 (1964).

    PubMed  CAS  Google Scholar 

  448. Svensmark, O., and Kristensen, P., Isoelectric point of native and sialidase-treated human serum cholinesterase. Biochim. Biophys. Acta 67, 441 (1963).

    Article  PubMed  CAS  Google Scholar 

  449. Swift, M. R., and LaDu, B. N., A rapid screening test for atypical serumcholinesterase. Lancet 1, 513 (1966).

    Article  PubMed  CAS  Google Scholar 

  450. Szentâgothai, J., Einige Bemarkungen zur Struktur der peripheren Endausbreitung regetativer Nerven. Acta Neuroveg. 15, 417 (1957).

    Article  Google Scholar 

  451. Tether, J. E., Echothiopate in treatment of myasthenia gravis. (To be published.)

    Google Scholar 

  452. Thomas, J., and Mather, L. E., The maternal plasma levels and placental transfer of bupivacaine following epidural analgesia. Br. J. Anaesth. 41, 1035 (1969).

    Article  PubMed  CAS  Google Scholar 

  453. Thompson, J. C., and Whittaker, M., Pseudocholinesterase activity in thyroid disease. J. Clin. Pathol. 18, 811 (1965).

    Article  PubMed  CAS  Google Scholar 

  454. Tobias, J. M., Lipton, M. A., and Lepinat, A., Effect of anaesthetic and convulsants on brain acetylcholine content. Proc. Soc. Exp. Biol. Med 61, 51 (1946).

    PubMed  CAS  Google Scholar 

  455. Todrick, A., Fellowes, K. P., and Rutland, J. P., The effect of alcohols on cholinesterase. Biochem. J. 48, 360 (1951).

    PubMed  CAS  Google Scholar 

  456. Tsuji, F. I., Foldes, F. F., and Rhodes, D. H., Jr., The hydrolysis of succinyldicholine chloride in human plasma. Arch. Int. Pharmacodyn. Ther. 104, 146 (1955).

    PubMed  CAS  Google Scholar 

  457. Tucek, S., Subcellular localization of enzymes generating acetyl-CoA and their possible relation to the biosynthesis of acetylcholine. In “Drugs and Cholinergic Mechanisms in the CNS” (E. Heilbronn and A. Winter, eds.), p. 117. Försvarets Forskningsanstalt. Stockholm, 1970.

    Google Scholar 

  458. Usdin, E., Reactions of cholinesterases with substrates, inhibitors and reactivators. In “Anticholinesterase Agents” (A. G. Karczmar, ed.), Int. Encycl. Pharmacol. Ther., Sect. 13, Vol. I, p. 45. Pergamon, Oxford, New York, 1970.

    Google Scholar 

  459. Usdin, E., Mitz, M. A., and Killos, P. J., Studies on the mechanism of action of cholinesterase. Abstr., Int. Congr. Biochem., 6th, 1964Vol. 4, p. 184 (1964).

    Google Scholar 

  460. Van Der Meer, C., Effects of calcium chloride on choline esterase. Nature (London) 171, 78 (1953).

    Article  Google Scholar 

  461. Vicas, I. M., and Sharkawi, M., Synthesis of 14C-acetylcholine by rat cerebral cortex. Proc. Can. Fed. Biol. Soc. 15, 108 (1972).

    Google Scholar 

  462. Vizi, E. S., Kuze, S., and Foldes, F. F., The influence of temperature on neuromuscular transmission in the rat. (To be published.)

    Google Scholar 

  463. Wang, R. I. H., and Ross, C., Prolonged apnea following succinylcholine in cancer patients receiving AB-132. Anesthesiology24, 363 (1963).

    Article  PubMed  CAS  Google Scholar 

  464. Waser, P. G., Receptor localization by autoradiographic techniques. Ann. N. Y. Acad. Sci. 144, 737 (1967).

    Article  CAS  Google Scholar 

  465. Webb, E. C., The nomenclature of multiple enzyme forms. Experientia 20, 592 (1964).

    Article  PubMed  CAS  Google Scholar 

  466. Weidemann, H., Die Serumcholinesteraseaktivität beim Leberparenchymschaden. Med Klin. (Munich) 58, 1795 (1963).

    CAS  Google Scholar 

  467. Wetstone, H. J., LaMotta, R. V., Middlebrook, L., and White, B. V., Studies of cholinesterase activity. IV. Liver function in pregnancy: Values of certain standard liver function tests in normal pregnancy. Am. J. Obstet. Gynecol. 76, 480 (1958).

    PubMed  CAS  Google Scholar 

  468. White, H. L., and Cavallito, C. J., Photoisomerization of styrylpyridine analogues in relation to choline acetyltransferase and cholinesterase inhibition Biochim. Biophys. Acta 206, 242 (1970).

    PubMed  CAS  Google Scholar 

  469. White, H. L., and Cavallito, C. J., Choline acetyltransferase, enzyme mechanism and mode of inhibition by a styrylpyridine analogue. Biochim. Biophys. Acta 206, 343 (1970).

    PubMed  CAS  Google Scholar 

  470. White, H. L., and Cavallito, C. J., Inhibition of bacterial and mammalian choline acetyltransferases by styrylpyridine analogues. J. Neurochem. 17, 1579 (1970).

    Article  PubMed  CAS  Google Scholar 

  471. White, H. L., and Wu, J. C., Kinetics of choline acetyltransferases (EC 2.3.1.6.) from human and other mammalian central and peripheral nervous tissues. J. Neurochem 20, 297 (1973).

    Article  PubMed  CAS  Google Scholar 

  472. Whittaker, M., The pseudocholinesterase variants: Esterase levels and increased resistance to fluoride. Acta Genet. Stat. Med. 14, 281 (1964).

    PubMed  CAS  Google Scholar 

  473. Whittaker, M., The pseudocholinesterase variants. A study of fourteen families selected via the fluoride resistant phenotype. Acta Genet. Stat. Med 17, 1 (1967).

    Google Scholar 

  474. Whittaker, M., The pseudocholinesterase variants. Differentiation by means of alkyl alcohols. Acta Genet. Stat. Med 18, 325 (1968).

    CAS  Google Scholar 

  475. Whittaker, M., Differential inhibition of human serum cholinesterase with n-butyl alcohol: recognition of new phenotypes. Acta Genet. Stat. Med. 18, 335 (1968).

    CAS  Google Scholar 

  476. Whittaker, V. P., Specificity, mode of action and distribution of cholinesterases. Physiol. Rev. 31, 312 (1951).

    PubMed  CAS  Google Scholar 

  477. Whittaker, V. P., The binding of neurohormones by subcellular particles of brain tissue. In “Regional Neurochemistry” (S. Kety and J. Elkes, eds.), p. 259. Pergamon, Oxford, 1960.

    Google Scholar 

  478. Whittaker, V. P., Michaelson, I. A., and Kirkland, R. J. A., The separation of synaptic vesicles from nerve-ending particles (synaptosomes). Biochem. J. 90, 293 (1964).

    PubMed  CAS  Google Scholar 

  479. Whittaker, V. P., and Sheridan, M. N., The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J. Neurochem. 12, 363 (1965).

    Article  PubMed  CAS  Google Scholar 

  480. Whittaker, V. P., and Wijesundera, S., The hydrolysis of succinylcholine by cholinesterase. Biochem. J. 52, 475 (1952).

    PubMed  CAS  Google Scholar 

  481. Wills, J. H., Toxicity of anticholinesterases and treatment of poisoning. In “Anti-cholinesterase Agents” (A. G. Karczmar, ed.), Int. Encycl. Pharmacol. Ther., Section 13, Vol. I, p. 355. Pergamon, Oxford, New York, 1970.

    Google Scholar 

  482. Wilson, C. W., Williams, J. P., and Miller, D H, Hazard of cholinergie crisis during treatment of myasthenia gravis with octamethyl pyrophosphoramide. Ann. Intern. Med 37, 574 (1952).

    PubMed  CAS  Google Scholar 

  483. Wilson, I. B., Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition. J. Biol. Chem. 190, 111 (1951).

    PubMed  CAS  Google Scholar 

  484. Wilson, I. B., Bergmann, F., and Nachmansohn, D., Acetylcholinesterase X. Mechanism of the catalysis of acylation reactions. J. Biol. Chem. 186, 781 (1950).

    PubMed  CAS  Google Scholar 

  485. Wilson, I. B., Acetylcholinesterase. XIII. Reactivation of alkyl phosphate-inhibited enzyme. J. Bioi. Chem. 199, 113 (1952).

    CAS  Google Scholar 

  486. Wilson, I. B., The active surface of the serum esterase. J. Bioi. Chem. 208, 123 (1954).

    CAS  Google Scholar 

  487. Wilson, I. B., The mechanism of enzyme hydrolysis studied with acetyl-cholinesterase. In “The Mechanism of Enzyme Action” (W. D. McElroy and B. Glass, eds.), p. 642. Johns Hopkins Press, Baltimore, Maryland, 1954.

    Google Scholar 

  488. Wilson, I. B., Conformation changes in acetylcholinesterase. Ann. N. Y. Acad Sci. 144, 664 (1967).

    Article  PubMed  CAS  Google Scholar 

  489. Wilson, I. B., and Bergmann, F., Studies on cholinesterase. VII. The active surface of acetylcholine esterase derived from effects of pH on inhibitors. J. Biol. Chem. 185, 479 (1950).

    PubMed  CAS  Google Scholar 

  490. Wilson, I. B., and Bergmann, F, Acetylcholinesterase. VIII. Dissociation constants of the active groups. J. Bioi. Chem. 186, 683 (1950).

    CAS  Google Scholar 

  491. Wilson, I. B., and Cabib, E., Acetylcholinesterase: Enthalpies and entropies of activation. J. Am. Chem. Soc. 78, 202 (1956).

    Article  CAS  Google Scholar 

  492. Wilson, I. B., and Ginsburg, S., Reactivation of acetylcholinesterase inhibited by alkyl phosphates. Arch. Biochem. Biophys. 54, 569 (1955).

    Article  PubMed  CAS  Google Scholar 

  493. Wilson, I. B., and Quan, C., Acetylcholinesterase studies on molecular complementariness. Arch. Biochem. Biophys. 73, 131 (1958).

    Article  PubMed  CAS  Google Scholar 

  494. Wilson, I. B., Harrison, M. A., and Ginsburg, S., Carbamyl derivatives of acetylcholinesterase. J. Biol. Chem. 236, 1498 (1961).

    PubMed  CAS  Google Scholar 

  495. Winterberg, H., Uber die Wirkung des Physostigmins auf das Warmblüterherz. Z. Exp. Pathol. Ther. 4, 636 (1907).

    Article  Google Scholar 

  496. Wolfers, P., Sensitivity to succinylcholine chloride. Br. Med. J. 2, 778 (1952).

    Article  Google Scholar 

  497. Wolleman, M., “Biochemistry of Brain Tumors” p. 134. Akadémiai Kiadó, Budapest, 1974.

    Google Scholar 

  498. Wolleman, M., and Zoltan, L., Cholinesterase activity of cerebal tumors and tumorous cysts. Arch. Neurol. (Chicago) 6, 161 (1962).

    Google Scholar 

  499. Yoshida, A., and Motulsky, A. G., A pseudocholinesterase variant (E Cynthiana) associated with elevated plasma enzyme activity. Am. J. Hum. Genet. 21, 486 (1969).

    PubMed  CAS  Google Scholar 

  500. Zajicek, J., Studies on the histogenesis of blood platelets. Acta Haematol. 12, 238 (1954).

    Article  PubMed  CAS  Google Scholar 

  501. Zajicek, J., and Datta, N., Investigation on the acetylcholinesterase activity of erythrocytes, platelets and plasma in different animal species. Acta Haematol. 9, 115 (1953).

    Article  PubMed  CAS  Google Scholar 

  502. Zarday, Z., Deery, A., Tellis, I., Soberman, R., and Foldes, F. F., Plasma and red cell cholinesterase activity in uremic patients before and after hemodialysis and after renal transplantation. Abstr. Sci. Pap., Annu. Meet. Am. Soc. Anesthesiol. p. 195 (1973).

    Google Scholar 

  503. Zarday, Z., Deery, A., Tellis, I., Soberman, R., and Foldes, F. F., Plasma and red cell cholinesterase activity in uremic patients.

    Google Scholar 

  504. Zarday, Z., Foldes, F. F., Deery, A. M., and Soberman, R., Butyryl-cholinesterase activity in plasma and urine of nephrotic patients. Clin. Res. 19, 554 (1971).

    Google Scholar 

  505. Zech, R., and Engelhard, H., Acetylcholinesterase-Aktivität im Serum des Elektrischen Aals. Hoppe-Seyler’s Z. Physiol. Chem. 348, 735 (1967).

    PubMed  CAS  Google Scholar 

  506. Zeller, E. A., and Bissegger, N. A., Uber die Cholinesterase des Gehirns und der Erythrocyten. 3. Mitteilung über die Beeinflussung von Fermentreaktionen durch Chemotherapeutica und Pharmaka. Heiu. Chini. Acta 26, 1619 (1943).

    Article  CAS  Google Scholar 

  507. Zsigmond, E. K., and Downs, J. R., Plasma cholinesterase activity in newborns and infants. Can. Anaesth. Soc. J. 18, 278 (1971).

    Article  PubMed  CAS  Google Scholar 

  508. Zsigmond, E. K., Pyridostigmine: A safe and effective antagonist to d-tubocurarine in anesthetized man. J. Clin. Pharmacol. Ther. 13, 155 (abstr.) (1972).

    Google Scholar 

  509. Zsigmond, E. K., Foldes, F. F., and Foldes, V. M., The in vitro inhibitory effect of LSD, its congeners and 5-hydroxytryptamine on human cholinesterase. J. Neurochem. 8, 72 (1961).

    Article  Google Scholar 

  510. Zsigmond, E. K., The effect of epinephrine and its congeners on human cholinesterases. Arch. Mt. Pharmacodyn. Ther. 197, 102 (1972).

    CAS  Google Scholar 

  511. Zsigmond, E. K., and Robins, G., The effect of a series of anti-cancer drugs on plasma cholinesterase activity. Can. Anaesth. Soc. J. 19, 75 (1972).

    Article  PubMed  CAS  Google Scholar 

  512. Zupaneic, A. O., Anionic centers of cholinesterases as possible cholinoreceptors. Is. J. Med. Sci. 1, 1396 (1965).

    Google Scholar 

  513. Zupaneic, A. O., Evidence for the identity of anionic centers of cholinesterases with cholinoreceptors. Ann. N. Y. Acad. Sci. 144, 689 (1967).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Foldes, F.F. (1978). Enzymes of Acetylcholine Metabolism. In: Foldes, F.F. (eds) Enzymes in Anesthesiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6248-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6248-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6250-3

  • Online ISBN: 978-1-4612-6248-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics