Solar Energy pp 203-235 | Cite as

Photogalvanovoltaic Cells and Photovoltaic Cells using Glassy Carbon Electrodes

  • H. Ti Tien
  • John Higgins
  • James Mountz
Part of the Contemporary Issues in Science and Society book series (CISS)


Numerous electrochemical photocells have been proposed for the direct conversion of solar energy to electricity or chemical fuel. These cells, on the basis of two well established photoelectric effects, can be classified as either photovoltaic (PV) or photogalvanic (PG). The operation of a PV cell depends on the generation of an EMF as a result of the absorption of light, whereas the operation of a PG cell relies on the excitation by light of photoactive species in solution which induces a Faradaic process at the electrode. This paper describes a new type of electrochemical photocell, the operation of which is based on the combined principles of the PV and PG phenomena. This system, having the advantages of both the PV and PG cell, is therefore called the photogalvanovoltaic (PGV) cell. The key element of the cell responsible for the PV effect is a porphyrin-coated glassy carbon electrode. Either Pt or glassy carbon can serve as the counter electrode. The results of an electrochemical PV cell using porphyrin-coated glassy carbon electrodes are also described.


Glassy Carbon Glassy Carbon Electrode Power Conversion Efficiency Photovoltaic Cell Bilayer Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Tsubomura, M. Matsumura, K. Nakatani, K. Yamamoto, and K. Maeda, Solar Energy, 21, 93–98 (1978).CrossRefGoogle Scholar
  2. 2.
    G. Porter and M.D. Archer, Interdisc. Sci. Rev., 1, 119–143 (1976).Google Scholar
  3. 3.
    M. Almgren, in Project Results: Solar Energy/Photochemical Conversion and Storage, S. Claessen and L. Engstrom, Ed. (National Swedish Board for Energy Source Development, Stockholm, (1977), Chapter VII.Google Scholar
  4. 4.
    J.R. Bolton, (Ed.) Solar Power and Fuels, Proc. First Int. Conf. on the Photochemical Conversion and Storage of Solar Energy, New York, Academic Press. (1977).Google Scholar
  5. 5.
    V. Balzani, F. Bolletta, M.T. Ganolfic, and M. Maestri, T. Curr. Chem., 75, 1–64 (1978).CrossRefGoogle Scholar
  6. 6.
    R. Gomer, Electrochim. Acta, 20, 13–20, (1975).CrossRefGoogle Scholar
  7. 7.
    A. Heller, K.-C. Chang, and B. Miller, J. Am. Chem. Soc., 100, 684–688, (1978).CrossRefGoogle Scholar
  8. 8.
    H. Gerischer, J. Electroanal, Chem., 58, 263–274 (1975).CrossRefGoogle Scholar
  9. 9.
    H. T. Tien and J. M. Mountz, Int. J. Energy Res., 2, 197–200 (1978).CrossRefGoogle Scholar
  10. 10.
    F. Lohmann, Z. Naturforsch, 22a, 843 (1967).Google Scholar
  11. 11.
    H. T. Tien and J. M. Mountz, J. Electrochem. Soc., 125, 885–886 (1978).CrossRefGoogle Scholar
  12. 12.
    R. Memming and H. Tributsch, J. Phys. Chem., 75, 562–568 (1971).CrossRefGoogle Scholar
  13. 13.
    D. E. Hall, J. A. Eckert, N. N. Lichtin and P. D. Wildes, J. Electrochem. Soc., 123, 1705–1707 (1976).CrossRefGoogle Scholar
  14. 14.
    J. B. Birks, Photochem. Photobiol., 24, 287–289 (1976).CrossRefGoogle Scholar
  15. 15.
    H. T. Tien, Bilayer Lipid Membranes (BLM): Theory and Practice, Dekker, Inc. New York (1974).Google Scholar
  16. 16.
    B. T. Kolomiets, Phys. Status Solidi, 7, 359 (1964).CrossRefGoogle Scholar
  17. 17.
    N. F. Mott, Rev. Modern Phys., 50, 203–208 (1978).CrossRefGoogle Scholar
  18. 18.
    N. F. Mott, Adv. Phys. 16, 49 (1967).CrossRefGoogle Scholar
  19. 19.
    M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, Phys. Rev. Lett., 22, 1069 (1969).CrossRefGoogle Scholar
  20. 20.
    R. R. Saxena and R. H. Bragg, J. of Non-Cryst. Solids, 28, 45–60 (1978).CrossRefGoogle Scholar
  21. 21.
    T. Noda, M. Inagaki, and S. Yamada, J. Non-Cryst. Solids, 1, 285–302 (1969).CrossRefGoogle Scholar
  22. 22.
    R. Grigorvici, J. Non-Cryst. Solids, 1, 303–325 (1969).CrossRefGoogle Scholar
  23. 23.
    K. Furukawa, J. Cryst. Japan, 6, 101 (1964).Google Scholar
  24. 24.
    S. Orszesko and K. T. Yang, Carbon, 12, 493 (1974).CrossRefGoogle Scholar
  25. 25.
    J.-H. Fuhrhop, in Structure and Bonding (Springer-Verlag, N.Y., 1973).Google Scholar
  26. 26.
    J. Kiwi, and M. Gratzel, J. Am. Chem. Soc., 100, 6314–6320 (1978).CrossRefGoogle Scholar
  27. 27.
    J. E. Falk, Porphyrins and Metalloporphyrins, (B.B.A. Library, Vol. 2; Elsevier, N.Y., 1964), pp. 22, 73.Google Scholar
  28. 28.
    J. M. Mountz and H. T. Tien, Solar Energy, 21, 291–295 (1978).CrossRefGoogle Scholar
  29. 29.
    E. J. Rabinowitch, J.Chem Phys., 8, 551 (1940).CrossRefGoogle Scholar
  30. 30.
    D. Dolphin, Z. Muljiani, K. Rousseau, D. C. Borg, T. Fajer, and R. H. Felton, in The Chemical and Physical Behavior of Porphyrins and Related Structures, Alan Adler, ed. (N.Y. Acad. Sci., 206 (1973)), pp. 177ff.Google Scholar

Copyright information

© The HUMANA Press Inc. 1979

Authors and Affiliations

  • H. Ti Tien
    • 1
  • John Higgins
    • 1
  • James Mountz
    • 1
  1. 1.Biophysics DepartmentMichigan State UniversityEast LansingUSA

Personalised recommendations