Skip to main content

The “Tandem Photoelectrolysis Plant” Concept: A Strategy for Fuel Production via Biomass Conversion Wastes

  • Chapter
Solar Energy

Abstract

One often-overlooked difficulty associated with the solar photoelectrolysis of water is the potential explosion hazard posed by the simultaneous evolution of hydrogen and oxygen. This problem can be addressed, in principle, by the addition of suitably-chosen redox electrolytes to the photoelectrolysis cell. We have found, as have A. J. Bard and his coworkers, that the evolution of oxygen can be suppressed completely in certain aqueous photoelectrolysis cells, with no adverse effect on either the photocurrent or the rate of cathodic hydrogen evolution, by simple carboxylate ions such as acetate or butyrate. In basic solutions, water-soluble products derived from the carboxylate ions are formed at the photoanode, but in acidic solutions, hydrocarbons such as ethane or hexane are formed (along with CO2) via a “photo-Kolbe” reaction. Such cells can therefore produce a valuable fuel mixture, consisting of hydrogen (from the cathode) and hydrocarbons (from the photoanode). Because both acetic acid and butyric acid are abundantly available in the aqueous effluent from the enzymatic digestion of biomass material, these observations lead to the concept of a “tandem photoelectrolysis plant”, in which a photoelectrolysis device would derive its input water supply from a biomass conversion device. While the problems of electrode stability and light absorption still remain to be solved, the approach described here completely eliminates the necessity of separating the anodic and cathodic gases produced in photoelectrolysis. This, in turn, can pave the way for the design of simple and less expensive photoelectrolysis plants than would otherwise be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ciamician, Science, 36, 385 (1912).

    Article  PubMed  CAS  Google Scholar 

  2. A. Fujishima, K. Honda, and S. Kikuchi, J. Chem. Soc. Japan, 72, 108 (1969).

    CAS  Google Scholar 

  3. A. Fujishima and K. Honda, J. Chem. Soc. Japan, M., 74, 355 (1971).

    CAS  Google Scholar 

  4. A. Fujishima, E. Sugiyama, and K. Honda, Bull. Chem. Soc. Japan, 44, 304 (1971).

    Article  CAS  Google Scholar 

  5. A. Fujishima and K. Honda, Bull. Chem. Soc. Japan, 44, 1148 (1971).

    Article  CAS  Google Scholar 

  6. A. Fujishima and K. Honda, Nature, 238, 37 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. A. Fujishima, K. Kobayakawa, and K. Honda, Bull. Chem. Soc. Japan, 48, 1041 (1975).

    Article  CAS  Google Scholar 

  8. A. J. Nozik, Appl. Phys. Lett., 29, 150 (1976).

    Article  CAS  Google Scholar 

  9. H. Yoneyama, H. Sakamoto, and H. Tamura, Electrochim. Acta, 20, 341 (1975).

    Article  CAS  Google Scholar 

  10. H. Gerischer, in “Advances in Electrochemistry and Electrochemical Engineering”, Vol. I, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1961), Chapter 4.

    Google Scholar 

  11. H. Tributsch and H. Gerischer, Ber. Bunsenges. Phys. Chem., 73, 851 (1969).

    Google Scholar 

  12. R. Memming and H. Tributsch, J. Phys. Chem., 562 (1971), and references cited therein.

    Google Scholar 

  13. A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Amer. Chem. Soc., 98, 1635 (1976).

    Article  CAS  Google Scholar 

  14. A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Amer. Chem. Soc., 98, 6418 (1976).

    Article  CAS  Google Scholar 

  15. A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Amer. Chem. Soc., 98, 6855 (1976).

    Article  CAS  Google Scholar 

  16. J. Manassen, G. Hodes, and D. Cahen, J. Electrochem. Soc., 124, 532 (1977).

    Article  CAS  Google Scholar 

  17. J. Manassen, D. Cahen, and G. Hodes, Nature, 263, 97 (1976).

    Article  CAS  Google Scholar 

  18. G. Hodes, J. Manassen, and D. Cahen, Nature, 261, 403 (1976), and references cited therein.

    Article  CAS  Google Scholar 

  19. See the comment by G. C. Barker in the Discussion following the paper: H. Gerischer, J. Electrochem. Soc., 113, 1174 (1966).

    Article  CAS  Google Scholar 

  20. A. J. Nozik, Appl. Phys. Letters, 30, 567 (1977).

    Article  CAS  Google Scholar 

  21. A. J. Nozik (Materials Research Center, Allied Chemical Company), personal communication to R. E. Schwerzel (February 1977).

    Google Scholar 

  22. R. Williams (David Sarnoff Research Center, RCA Laboratories), personal communication to R. E. Schwerzel (February 1977).

    Google Scholar 

  23. M. S. Wrighton, P. J. Wolczanski, and A. B. Ellis, J. Solid State Chem., 22, 17 (1977).

    Article  CAS  Google Scholar 

  24. B. Kraeutler and A. J. Bard, J. Amer. Chem. Soc., 99, 7729 (1977).

    Article  CAS  Google Scholar 

  25. B. Kraeutler and A. J. Bard, J. Amer. Chem. Soc., 100, 2239 (1978).

    Article  CAS  Google Scholar 

  26. B. Krautler and A. J. Bard, J. Amer. Chem. Soc., 100, 5985 (1978).

    Article  Google Scholar 

  27. M. A. Butler, R. D. Nasby, and R. K. Quinn, Solid State Commun., 19, 1011 (1976).

    Article  CAS  Google Scholar 

  28. G. Hodes, D. Cahen, and J. Manassen, Nature, 260, 312 (1976).

    Article  CAS  Google Scholar 

  29. A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, J. Phys. Chem., 80, 1325 (1976).

    Article  CAS  Google Scholar 

  30. J. H. Kennedy and K. W. Frese, Jr., J. Electrochem. Soc., 123, 1683 (1976).

    Article  CAS  Google Scholar 

  31. H. Tributsch, J. Electrochem. Soc., 125, 1086 (1978).

    Article  CAS  Google Scholar 

  32. W. W. Anderson and Y. G. Chai, Energy Conversion, 15, 85 (1976).

    Article  CAS  Google Scholar 

  33. G. Kortüm and J. O’M. Bockris, “Textbook of Electrochemistry”, Vol. I., Elsevier Publishing Co., New York (1951) Chapter 8.

    Google Scholar 

  34. J. M. Bolts and M. S. Wrighton, J. Phys. Chem., 80, 2641 (1976).

    Article  CAS  Google Scholar 

  35. R. E. Schwerzel, “Methods for the Photochemical Utilization of Solar Energy”, paper presented at the 29th Southeast Regional Meeting of the American Chemical Society, Tampa, Florida (November 9–11, 1977).

    Google Scholar 

  36. R. E. Schwerzel, in “Radiation Energy Conversion in Space”, K. W. Billman, Ed, American Institute of Aeronautics and Astronautics, New York (1978), pp. 626 - 657.

    Google Scholar 

  37. A. K. Vijh and B. E. Conway, Chemical Reviews, 67, 623 (1967).

    Article  CAS  Google Scholar 

  38. See, for instance, S. C. Prescott and C. G. Dunn, “Industrial Microbiology”, 3rd Ed., McGraw-Hill, New York (1959).

    Google Scholar 

  39. J. E. Sanderson, D. L. Wise and D. G. Augenstein, “Liquid Hydrocarbon Fuels from Aquatic Biomass”, Paper No. 27 presented at the Second Annual Fuels from Biomass Symposium, Rensselaer Polytechnic Institute, Troy, New York (June 20–22, 1978).

    Google Scholar 

  40. S. N. Frank and A. J. Bard, J. Phys. Chem., 81, 1484 (1977).

    Article  CAS  Google Scholar 

  41. “CRC Handbook of Chemistry and Physics”, 53rd Ed., Chemical Rubber Publishing Company, Cleveland, Ohio (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard R. Hautala R. Bruce King Charles Kutal

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The HUMANA Press Inc.

About this chapter

Cite this chapter

Schwerzel, R.E. et al. (1979). The “Tandem Photoelectrolysis Plant” Concept: A Strategy for Fuel Production via Biomass Conversion Wastes. In: Hautala, R.R., King, R.B., Kutal, C. (eds) Solar Energy. Contemporary Issues in Science and Society. Humana Press. https://doi.org/10.1007/978-1-4612-6245-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6245-9_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-6247-3

  • Online ISBN: 978-1-4612-6245-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics