Physical and chemical properties of fly ash from coal-fired power plants with reference to environmental impacts

  • A. L. Page
  • Ahmed A. Elseewi
  • I. R. Straughan
Part of the Residue Reviews book series (RECT, volume 71)


Interest in coal residue research has recently been increased with anticipated increased dependence on coal as a source of energy. United States coal reserves are estimated at 3.6 trillion metric tons, from which 396 billion metric tons can economically be mined (Swansonet al. 1976). United States electric power utilities consume from 60 to 65% of the amount of coal produced (Brackett 1973). In 1974, the power industry utilized approximately 400 million tons of coal (Ash at Work 1975). The magnitude of trace element mobilization into the environment from fossil-fuels is substantial and is comparable to that originating from major sedimentary cycles such as river flows and natural sediments (Bertine and Goldberg 1971). Consequently, increasing regulatory measures have been imposed on power industries by federal and local authorities restricting the amount of coal residue entering the atmosphere.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allaway, W. H.: Agronomic controls over the environmental cycling of trace elements. Adv. Agron. 20, 235 (1968).CrossRefGoogle Scholar
  2. Anderson, W. L., and K. E. Smith: Dynamics of mercury at coal-fired power plant and adjacent coaling lake. Environ. Sci. Technol. 11, 75 (1977).CrossRefGoogle Scholar
  3. Andren, A. W., B. G. Blaylock, E. A. Bondietti, C. W. Francis, S. G. Hildebrand, J. W. Huckabee, D. R. Jackson, S. E. Lindberg, F. H. Sweeton, R. I. Van Hook, and A. P. Watson: Ecology research. In: Ecology and analysis of trace contaminants National Science Foundation, ORNL-NSF-EATC-11, pp. 61–104 (1974).Google Scholar
  4. Ash at Work: Ash collections soar to 59.5 million tons in 1974. Vol. VII(3). National Ash Association, Washington, D.C. (1975).Google Scholar
  5. Bern, J.: Residues from power generation: Processing, recycling, and disposal. In: Land application of waste materials. Soil Cons. Soc. Amer. Ankeny, Iowa, pp. 226–248 (1976).Google Scholar
  6. Bertine, K. K., and E. D. Goldberg: Fossil fuel combustion and the major sedimentary cycle. Science 173, 233 (1971).PubMedCrossRefGoogle Scholar
  7. Bingham, F. T.: Boron in cultivated soils and irrigation waters. Adv. Chem. Series 123, 130 (1973).Google Scholar
  8. Block, C., and R. Dams: Inorganic composition of Belgian coals and coal ashes. Environ. Sci. Technol. 9, 146 (1975).CrossRefGoogle Scholar
  9. Block, C., and R. Dams, Study of fly ash emission during combustion of coal. Environ. Sci. Technol. 10, 1011 (1976).CrossRefGoogle Scholar
  10. Brackett, C. E.: Production and utilization of fly ash in the United States. Proc. 3rd Internat. Ash Utilization Symp. Pittsburgh, PA (1973).Google Scholar
  11. Bradford, G. R., A. L. Page, and I. R. Straughan: A study of the deposition of fly ash on desert soils and vegetation adjacent to a coal-fired generating station. In D. C. Adrian and I. L. Brisbin, Jr. (Eds.): Environmental chemistry and cycling processes. Proc. Symp. Augusta, GA, April 28-May 1 (1976). DOE Symposium Series 45, CONF-760429, pp. 383–393 (1978).Google Scholar
  12. Bradsley, C. E., and J. D. Lancaster: Determination of reserve sulfur and soluble sulfates in soils. Soil Sci. Soc. Amer. Proc. 24, 265 (1960).Google Scholar
  13. Chang, A. C., L. J. Lund, A. L. Page, and J. E. Warneke: Physical properties of fly ash-amended soils. J. Environ. Qual. 6, 267 (1977).CrossRefGoogle Scholar
  14. Cope, F.: The development of a soil from an industrial waste ash. Internat. Soc. Soil Sci. Trans. Comm IV, V (Palmerston, N. New Zealand), pp. 859–863 (1962).Google Scholar
  15. Davison, R. L., D. I. S. Natusch, J. R. Wallace, and C. A. Evans, JR.: Trace ele-ments in fly ash, dependence of concentration on particle size. Environ. Sci. Technol. 8, 1107 (1974).CrossRefGoogle Scholar
  16. Doruusr, J. W., and D. C. Martens: Molybdenum availability as influenced by application of fly ash to soil. J. Environ. Qual, 7, 69 (1972).Google Scholar
  17. Dreesen, D. R., E. S. Gladney, J. W. Owens, B. L. Perkins, C. L. Wienke, and L. E. Wangen: Comparison of levels of trace elements extracted from fly ash and levels found in effluent waters from a coal-fired power plant. Environ. Sci. Technol. 11, 1017 (1977).CrossRefGoogle Scholar
  18. Eaton, F. M.: Boron. In H. D. Chapman (Ed.): Diagnostic criteria for plants and soils. Univ. Calif., Div. Ag. Sci., Berkeley, CA (1966).Google Scholar
  19. Elseewi, A. A., A. L. Page, and F. T. Bingham: Availability of sulfur in sewage sludge to plants: A comparative study. J. Environ. Qual. 7, 213 (1978).CrossRefGoogle Scholar
  20. Elseewi, A. A., F. T. Bingham, and A. L. Page: Growth and mineral composition of lettuce and Swiss chard grown on fly ash amended soils. In D. C. Adriano and I. L. Brisbin, Jr. (Eds.): Environmental chemistry and cycling processes. Proc. Symp. Augusta, GA April 28—May 1 (1976). DOE Symposium Series 45, CONF-760429, pp. 568–581 (1978).Google Scholar
  21. Elseewi, A. A., F. T. Bingham, and A. L. Page, Availability of sulfur in fly ash to plants. J. Environ. Qual. 7, 69 (1978b).CrossRefGoogle Scholar
  22. Elseewi, A. A., F. T. Bingham, and A. L. Page, Availability of sulfur in sewage sludge to plants: A comparative study. J. Environ. Qual. 7, 213 (1978c).CrossRefGoogle Scholar
  23. Fisher, G. L., D. P. Y. Chang, and M. Brummer: Fly anti collected from electrostatic precipitators. Microcrystalline structures and the mystery of the spheres. Science 192, 553 (1976).PubMedCrossRefGoogle Scholar
  24. Ford, C. T., R. R. Care, and R. E. Bosshart: Preliminary evaluation of the effect of coal cleaning on trace element removal. Trace element program, report No. 3. Bituminous Coal Research Inc., 350 Hochberg Rd., Monroeville, PA (1976).Google Scholar
  25. Furr, A. K., T. F. Parkinsen, R. A. Hinrichs, D. R. Van Campen, C. A. Bache, W. H. Gutenmann, L. E. ST. John, JR., I. S. Pakkala, and D. J. Lisk: National survey of elements and radioactivity in fly ashes. Absorption of elements by cabbage grown in fly ash-soil mixtures. Environ. Sci. Technol. 11, 1104 (1977).CrossRefGoogle Scholar
  26. Higgins, B. P. J., S. C. MoniJr, and R. L. Irvine: Lake treatment with fly ash, lime and gypsum. J. Water Poll. Control Fed. 48, 2153 (1976).Google Scholar
  27. Hodgson, D. R., and R. HOLLIDAY: The agronomic properties of pulverized fuel ash. Chem. & Ind., pp. 785–790 (1966).Google Scholar
  28. Hodgson, D. R., and W. N. Townsend: The amelioration and revegetation of pulverized fuel ash. In R. J. Huntik and G. Davis (Eds.): Ecology and reclamation of devastated land, Vol. 2, pp. 247–271. New York: Gordon and Breach (1973).Google Scholar
  29. Holliday, R., D. R. Hodgson, W. N. Townsend, and J. W. Wood: Plant growth on fly ash. Nature 181, 1079 (1958).CrossRefGoogle Scholar
  30. Jackson, M. L.: Soil chemical analysis. New York: Prentice Hall (1958).Google Scholar
  31. Jones, L. H., and A. V. Lewis: Weathering of fly ash. Nature 185, 404 (1960).CrossRefGoogle Scholar
  32. Jurinak, J. J., WM. J. Grenney, G. L. Woldridge, J. P. Riley, and R. J. Wagenet: A model of environmental transport of heavy metals originating from stack derived particulate emission in semi-arid regions. Research and Development 77-RD-27, S. Calif. Edison Co., Rosemead, CA (1977).Google Scholar
  33. Kaakinen, J. W., R. M. Jorden, M. H. Lawasani, and R. E. West: Trace element behavior in coal-fired power plant. Environ. Sci. Technol 9, 862 (1975).CrossRefGoogle Scholar
  34. Klein, D. H., and P. Russell; Heavy metals: Fallout around a power plant. Environ. Sci. Technol. 7, 357 (1973).CrossRefGoogle Scholar
  35. Lee, R E, Jr., and D. J. Von Lehmden: Trace metal pollution in the environment. J. Air Pollution Control Assoc. 23, 853 (1973).Google Scholar
  36. Lee, R. E., H. L. Crist, A. E. Riley, and K. E. Macleod: Concentration and size of trace metal emissions from a power plant, a steel plant, and a cotton gin. Environ. Sci. Technol. 9, 643 (1975).CrossRefGoogle Scholar
  37. Leslie, A. C. D., M. S. Ahlberg, J. W. Winchester, and J. W. Nelson: Aerosol characterization for sulfate health effects assessment in Florida. In D. D. Hemphill (Ed.): Trace substances in environmental health XI, 349 (1977).Google Scholar
  38. Linton, R. W., A. Lox, and D. F. S. Natusch: Surface predominance of trace elements in airborne particles. Science 19, 852 (1976).CrossRefGoogle Scholar
  39. Lisk, D. L.: Trace metals in soils, plants, and animals. Adv. Agron. 24, 267 (1972).CrossRefGoogle Scholar
  40. Lyon, W. S.: Trace element measurements at the coal-fired steam plant. Cleveland: CRS Press, 136 pp. (1977).Google Scholar
  41. Martens, D. C.: Availability of plant nutrients in fly ash. Compost Sci. 12, 15 (1971).Google Scholar
  42. Martens, D. C, M. G. SchnappingerJR., and L. W ZELANZY:. The plant availability of po- tassium in fly ash. Soil Sci. Soc. Amer. Proc. 34, 453 (1970).Google Scholar
  43. Mulford, F. R., and D. C. Martens: Response of alfalfa to boron in fly ash. Soil Sci. Soc. Amer. Proc. 35, 296 (1971).Google Scholar
  44. Natusch, D. F. S., and J. R. Wallace: Urban aerosol toxicity: The influence of particle size. Science 186, 695 (1974).PubMedCrossRefGoogle Scholar
  45. Natusch, D. F. S., J. R. Wallace, C. F. Bauer, H. Matusiewicz, C. A. Evans, J. Baker, A. Lou, R. W. Linton, and P. K. Hopke: Characterization of trace elements in fly ash. 1975 Proc. Internat. Conf. on Heavy Metals in the Environment. Toronto, Ontario, Canada, Vol. II, Part 2, pp. 553–575 (1975).Google Scholar
  46. Onnov, J. M., R. C. Regaiiii, R. E. Heft, G. L. Fisher, D. Silberman, and B. A. Prentice: Interlaboratory comparison of neutron activation and atomic absorption analyses of size-classified stack fly ash. 8th Materials Research Symp. Methods and Standards for Environmental Measurement, Gaithersberg, MD, Sept. 20–24 (1976).Google Scholar
  47. Page, A. L., F. T. Bingham, L. J. Lund, G. R. Bradford, and A. A. Elseewi: Con-sequence of trace element enrichment of soils and vegetation from the combustion of fuel used in power generation. Biannual Report, S. Calif. Edison Research and Development Series 77-RD-29, Rosemead, CA (1977).Google Scholar
  48. Paulson, C. A. J., and A. R. Ramsden. Some microscopic features of fly ash particles and their significance in relation to electrostatic precipitation, pp. 175–185. Atmospheric Environment. New York: Pergamon Press (1970).Google Scholar
  49. Phung, H. T., L. J. Lund, and A. L. Page: Potential use of fly ash as a liming material. In D. C. Adriano and I. L. Brisbin, Jr. (Eds.): Environmental chemistry and cycling processes. Proc. Symp. Augusta, GA, April 28—May 1 (1976). DOE Symposium Series 45, CONF-760429, pp. 504–515 (1978). (1978 b).Google Scholar
  50. Plank, C. O., and D. C. Martens: Amelioration of soils with fly ash. J. Soil Water Cons. 28, 177 (1973).Google Scholar
  51. Plank, C. O., and D. C. Martens, Boron availability as influenced by application of fly ash to soil. Soil Sci. Soc. Amer. Proc. 38, 974 (1974).Google Scholar
  52. Plank, C. O., D. C. Martensand D. L. Hallock: Effect of soil application of fly ash on chemical com-position and yield of corn (Zea mays L.) and on chemical composition of displaced soil solutions. Plant and Soil 42, 465 (1975).CrossRefGoogle Scholar
  53. Bees, W. I., and G. H. Sidra: Plant nutrition on fly ash. Plant and Soil 8, 141 (1956).CrossRefGoogle Scholar
  54. Richards, L. A. (Ed.): Diagnosis and improvement of saline and alkali soils. U.S. Dept. Agr. Handbook No. 60 (1954).Google Scholar
  55. Schnappinger, M. G., JR., D. C. Martens, and C. O. Plank: Zinc availability as influenced by application of fly ash to soil. Environ. Sci. Technol. 9, 258 (1975).CrossRefGoogle Scholar
  56. Shannon, D. G., and L. O. Fine: Cation solubilities of lignite fly ashes. Environ. Sei. Technol. 12, 1026 (1974).CrossRefGoogle Scholar
  57. Stoewsand, G. S., W. H. Gutenmann, and D. J. LisWheat grown on fly ash; High selenium uptake and response when fed to Japanese quail. J. Agr. Food Chem. 26, 757 (1978).CrossRefGoogle Scholar
  58. Swaine, D. J.: Trace elements in coal. In D. D. Hemphill (Ed.): Trace substances in environmental health XI, 107 (1977).Google Scholar
  59. Swanson, V. E.: Composition and trace element content of coal and power plant ash. Part 2. App. J of Southwest Energy Study, U. S. Dept. Int. Open File Report, 61 p. (1972).Google Scholar
  60. Swanson, V. E., J. M. Medlin, J. R. Hatch, S. L. Coleman, G. H. Woon, JR., S. D. Wood-Ruff, and R. T. Hildebrand: Collection, chemical analysis and evaluation of coal samples in 1975. U.S. Dept. Int., Geological Survey, Open File Report 76–468, 503 p. (1976).Google Scholar
  61. Theis, T. L., and J. L. Whith: Sorptive behavior of trace metals on fly ash in aqueous systems. Environ. Sci. Technol. 11, 1096 (1977).CrossRefGoogle Scholar
  62. Townsend, W. N., and D. R. Honcson: Edaphological problems associated with deposits of pulverized fuel ash. In R. J. Huntick and G. Davis (Eds.): Ecology and reclamation of devastated land, Vol. 1, pp. 45–56. New York: Gordon and Breach (1973).Google Scholar
  63. U.S. Department of Health,Education, and Welfare: Air quality criteria for particulate matter. National Air Pollution Control Administration Publication No. AP-49, p. 115 (Jan. 1969).Google Scholar
  64. U.S. Environmental Protection Agency: Coal fired power plant, trace element study. Vol. 1. A three station comparison. Rocky Mountain-Prairie Region. Region VIII, Denver, CO (1975).Google Scholar
  65. Vaughn, B. E., K. H. Abel, D. A. Cataldo, J. M. Hales, C. D. Hane, L. A. Ranticelli, R C Rourson, R. E. Wildung, and E. G. Wolf: Review of potential impact on health and environmental quality from metals entering the environment as a result of coal utilization. Pacific NW Laboratories, Battelle Memorial Institute, Richland, Washington (1975).Google Scholar
  66. Zoller, W. H., E. S. Gladney, G. E. Gordon, and J. J. Bors: Emissions of trace elements from coal-fired power plants. In D. D. Hemphill (Ed.): Trace substances in environmental health VIII, 167 (1974).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • A. L. Page
    • 1
  • Ahmed A. Elseewi
    • 1
  • I. R. Straughan
    • 2
  1. 1.Department of Soil and Environmental SciencesUniversity of CaliforniaRiversideUSA
  2. 2.Research and DevelopmentSouthern California Edison Co.RosemeadUSA

Personalised recommendations