Advertisement

The Thymic Microenvironment

  • R. K. Jordan
  • D. A. Crouse
  • C. M. Harper
  • E. B. Watkins
  • J. G. Sharp
Conference paper
Part of the Experimental Hematology Today book series (HEMATOLOGY, volume 1979)

Abstract

All the mature cellular elements of the blood (erythrocytes, granulocytes, platelets, monocytes, and lymphocytes) require the continuous replacement of their respective populations throughout the life-span of the animal. Contemporary concepts point to the pluripotential hemopoietic stem cell as the ancestral cell for all the various differentiating populations. Recently, a model of the process of hemopoiesis from the stem cell to mature progeny has been described as consisting of three overlapping pyramidal-shaped hierarchies of cell compartments (24). Using this model of hemopoietic differentiation, which has been extensively investigated and described for myeloid elements, we wish to propose a parallel pyramidal system of differentiation for the T-lymphocyte series (Figure 19.1).

Keywords

Monolayer Culture Nonspecific Esterase Thymic Lymphocyte Thymic Extract Thymic Microenvironment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, S., Miller, R. G., and Phillips, R. A. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems, J. Exp. Med., 745: 1567, 1977.CrossRefGoogle Scholar
  2. 2.
    Basch, R. S., and Kadish, J. L. Hematopoietic thymocyte precursors and properties of precursors. J. Exp. Med., 145: 405, 1977.PubMedCrossRefGoogle Scholar
  3. 3.
    Bearman, R. M., Levine, G. D., and Bensch, K. G. The ultrastructure of the normal human thymus: A study of 36 cases. Anat. Rec., 190: 155, 1978.CrossRefGoogle Scholar
  4. 4.
    Beller, D. I., Farr, A. G., and Unanue, E. R. Regulation of lymphocyte proliferation and differentiation by macrophages. Fed. Proc., 37: 91, 1978.PubMedGoogle Scholar
  5. 5.
    Cline, M. J., Rothman, B., and Golde, D. W. Effect of endotoxin on the production of colony-stimulating factor by human monocytes and macrophages. J. Cell Physiol., 84: 193, 1974.PubMedCrossRefGoogle Scholar
  6. 6.
    Everett, N. B., and Tyler, R. W. Radioautographic studies of the stem cell in the thymus of the irradiated rat. Cell Tissue Kinet., 2: 341, 1969.Google Scholar
  7. 7.
    Friedenstein, A. F. Precursor cells of mechanocytes. Int. Rev. Cytol., 327, 1976.Google Scholar
  8. 8.
    Goldschneider, I. Antigenic relationship between bone marrow lymphocytes, cortical thymoctyes and a sub- population of peripheral T-cells in rat; description of a bone marrow lymphocyte antigen. Cell Immunol., 24: 289, 1976.PubMedCrossRefGoogle Scholar
  9. 9.
    Good, R. A. Structure-function relations in the lymphoid system. Clin. Immunobiol. 7: 1, 1972.Google Scholar
  10. 10.
    Hirschhorn, R., Hirschholrn, K., and Waithe, W. I. Methods in lymphocyte transformation studies. In McCluskey, R. T. and Cohen, S., eds., Mechanisms of Cell-mediated Immunity. New York: Wiley, 1974, p. 115.Google Scholar
  11. 11.
    Jordan, R. K. Development of sheep thymus in relation to in utero thymectomy experiments. Eur. J. Immunol., 6: 693, 1976.PubMedCrossRefGoogle Scholar
  12. 12.
    Jordan, R. K., and Crouse, D. A. Studies on the thymic microenvironment: I. Morphological and functional characterization of thymic non-lymphoid cells grown in tissue culture. J. Reticuloendothel. Soc. In press.Google Scholar
  13. 13.
    Jordan, R. K., Crouse, D. A., and Owen, J. J. T. Studies on the thymic microenvironment: II. Non-lymphoid cells responsible for transferring the microenvironment. J. Reticuloendothel. Soc. (submitted).Google Scholar
  14. 14.
    Kass, L. Nonspecific esterase activity in “Hairy Cells.” Acta. Haemat., 55: 103, 1977.CrossRefGoogle Scholar
  15. 15.
    Keller, R. Major changes in lymphocyte proliferation evoked by activated macrophages. Cell Immunol. 77: 542, 1975.CrossRefGoogle Scholar
  16. 16.
    Kostowiecki, M. The thymic macrophages Z. mikranat. Forsch. 69: 585, 1963.Google Scholar
  17. 17.
    Kruisbeek, A. M., Astaldi, G. C. B., Blankwater, M. J., Zijlstra, J. J., Levert, L. A., and Astaldi, A. The in vitro effect of a thymic epithelial culture supernatant on mixed lymphocyte reactivity and intracellular cAMP levels of thymocytes and on antibody production to SRBC by Nu/Nu spleen cells. Cel. Immunol., 35: 134, 1978.CrossRefGoogle Scholar
  18. 18.
    Kurland, J. L., and Moore, M. A. S. The regulatory role of the macrophage in normal and neoplastic hemopoiesis. In Baum, S. J. and Ledney, G. D., eds., Experimental Hematology. New York: Springer-Verlag, 1977, p. 51.Google Scholar
  19. 19.
    Law, L. W., Dunn, T. B., Trainin, N., and Levey, R. H. Studies of thymic function. In Defendi, V., and The Thymic MicroenvironmentGoogle Scholar
  20. 20.
    LeDouarin, N. M., and Jotereau, F. V. Tracing of cells of avian thymus through enbryonic life in interspecific chimeras. J. Exp. Med., 142: 11, 1975.CrossRefGoogle Scholar
  21. 21.
    Lipsky, P. E., and Rosenthal, A. S. Macrophage-lymphocyte interaction. I. Characteristics of the antigen- independent-binding of guinea pig thymocytes and lymphocytes to syngeneic macrophages. J. Exp. Med., 138: 900, 1973.PubMedCrossRefGoogle Scholar
  22. 22.
    MacVittie, T. J., and Weatherly, T. L. Characteristics of the in vitro monocytemacrophage colony-forming cells detected with the mouse thymus and lymph nodes. In Baum, S. J., and Ledney, G. D., eds., Experimental Hematology Today New York: Springer-Verlay, 1977, p. 147.Google Scholar
  23. 23.
    Martinez, C., Kersery, J., Papermaster, B. W., and Good, R. A. Skin homograft survival in thymectomized mice. Proc. Soc. Exp. Biol. Med. 109: 193, 1962.PubMedGoogle Scholar
  24. 24.
    Metcalf, D. Hemopoietic Colonies, Recent Results in Cancer Research. Vol. 61, New York: Springer-Verlay, 1977, p. 1.Google Scholar
  25. 25.
    Metcalf, D., and Moore, M. A. S. Haemopoietic Cells. Amsterdam: North-Holland, 1971.Google Scholar
  26. 26.
    Miller, J. F. A. P. Effect of neonatal thymectomy on the immunological responsiveness of the mouse. Proc. Roy. Soc. B., 756: 415, 1962.CrossRefGoogle Scholar
  27. 27.
    Mosier, D. E., and Pierce, C. W. Functional maturation of thymic lymphocyte populations in vitro. J. Exp. Med., 756: 1484, 1972.CrossRefGoogle Scholar
  28. 28.
    Owen, J. J. T. The origins and development of lymphocyte populations, In Porter, R., and Knight, J., eds., Ontogeny of Acquired Immunity, Ciba Foundation Symposium. Amsterdam: Associated Scientific Publishers, 1972, p. 35.Google Scholar
  29. 29.
    Owen, J. J. T., and Ritter, M. A. Tissue interaction in development of thymus lymphocytes. J. Exp. Med., 729: 431, 1969.CrossRefGoogle Scholar
  30. 30.
    Owen, J. J. T., and Raff, M. C. Studies on differentiation of thymus-derived lymphocytes. J. Exp. Med., 752: 1216, 1970.CrossRefGoogle Scholar
  31. 31.
    Owen, J. J. T., Jordan, R. K. J., Robinson, J. H., Singh, U., and Wilcox, H. N. A. In vitro studies on the generation of lymphocyte diversity. Cold Spring Harbor Symp., 47:129, 1977.Google Scholar
  32. 32.
    Pazmino, N. H., Ihle, J. N., and Goldstein, A. L. Induction in vivo and in vitro of terminal deoxynucleotidyl transferase by thymosin in bone marrow cells from athymic mice. J. Exp. Med., 147: 708, 1978.PubMedCrossRefGoogle Scholar
  33. 33.
    Pearse, A. G. E. Histochemistry, Theoretical and Applied, 3rd ed. Boston: Little Brown, 1972.Google Scholar
  34. 34.
    Sainte-Marie, G., and Leblond, C. P. Thymus-cell populations dynamics. In Good, R. A., and Gabrielsen, A. E., eds., The Thymus in Immunobiology. New York and London: Harper & Row, 1964, p. 207.Google Scholar
  35. 35.
    Sharp, J. A. The association of lymphocytes with larger motile cells in cultures of mammalian thymus. J. Pathol. 705: 87, 1971.CrossRefGoogle Scholar
  36. 36.
    Siegel, I. Natural and antibody-induced adherance of guinea-pig phagocytic cells to autologous and heterologous thymocytes. J. Immunol, 705: 879, 1970.Google Scholar
  37. 37.
    Stewart, C. C., Lin, H. S., and Adles, C. Proliferation and colony-forming ability of peritoneal exudate cells in liquid culture. J. Exp. Med., 141: 1114, 1975.PubMedCrossRefGoogle Scholar
  38. 38.
    Stutman, O. The posthymic precursor cell In van Bekkum, D. W., ed., Biological Activity of Thymic Hormones. Rotterdam: Kooyker Scientific Publications, 1976, p. 87.Google Scholar
  39. 39.
    Till, J. E., McCulloch, E. A., and Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Nat. Acad. Sci. U.S.A., 57: 29 1964.CrossRefGoogle Scholar
  40. 40.
    Tin, J. E., Price, G. B., Mak, T. W., and McCulloch, E. A. Regulation of blood cell differentiation. Fed. Proc., 34: 2279, 1975.Google Scholar
  41. 41.
    Trentin, J. J. Hemopoietic micro environments. Transplant. Proc., 10: 11, 1978.Google Scholar
  42. 42.
    Van den Tweel, J. G., and Walker, W. S. Macrophage- induced thymic lymphocyte maturation. Immunology, 55: 817, 1977.Google Scholar
  43. 43.
    Unanue, E. R. The regulation of lymphocyte functions by the macrophage. Immunol. Rev., 40: 221, 1978.CrossRefGoogle Scholar
  44. 44.
    Waksal, S. D., Cohen, I. R., Waksal, H. W., Wekerle, H., St. Pierre, R. L., and Feldman, M. Induction of T- cell differentiation in vitro by thymus epithelial cells. Ann. N.Y. Acad. Sci. 249: 492, 1975.PubMedCrossRefGoogle Scholar
  45. 45.
    Willis, J. I., and St. Pierre, R. L. Immunological reconstitution of neonatally thymectomized rats following implantation of thymic epithelial cells. Adv. Exp. Biol. Med., 73A: 111, 1976.Google Scholar
  46. 46.
    Wilson, F. D., Stitzel, K. A., Klein, A. K., Shifine, M., Graham, R., Jones, M., Bradley, E., and Rosenblat, L. S. Quantitative response of bone marrow colony forming units (CFU-C and PFU-C) in weanling beagles exposed to acute whole body gamma irradiation. Radiat. Res., 74: 289, 1978.PubMedCrossRefGoogle Scholar
  47. 47.
    VanZant, G., Goldwasser, E., and Pech, N. Studies of the erythroid inductive microenvironment in vitro. In Baum, S. J. and Ledney, G. D., eds., Experimental Hematology Today. New York: Springer-Verlag, 1977, p. 71.Google Scholar
  48. 48.
    Zinkernagel, R. M., Callahan, G. N., Althage, A., Cooper, S., Klein, P. A., and Klein, J. On the thymus in the differentiation of “H-2 Self Recognition” by T cells: Evidence for dual recognition? J. Exp. Med., 747: 882, 1978.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • R. K. Jordan
  • D. A. Crouse
  • C. M. Harper
  • E. B. Watkins
  • J. G. Sharp

There are no affiliations available

Personalised recommendations