Advertisement

Environmental and metabolic transformations of primary aromatic amines and related compounds

  • George E. Parris
Part of the Residue Reviews book series (RECT, volume 76)

Abstract

Nitrogen forms a variety of functional groups in combinations with carbon, hydrogen, and oxygen (Table I). These functional groups have been particularly useful for adapting and activating aromatic compounds for use as chemical intermediates in synthetic processes. In addition, many final products contain nitrogen functionalities including pesticides, explosives, drugs, dyes, antioxidants, and antiozonants (Meylan et al. 1976, Mason and Sweeney 1976).

Keywords

Soil Organic Matter Humic Acid Aromatic Amine Coniferyl Alcohol Aromatic Nitro Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos, E., I. Scheunert, W. Klein, and F. Korte: Conversion of Pchloroaniline-14C in green algae and water. Chemosphere 4, 351 (1978).Google Scholar
  2. Bailey, G. W., and J. L. White: Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Reviews 32, 29 (1970).PubMedGoogle Scholar
  3. Baisas, G. J.: The reaction of azidoquinones with nucleophiles and the chemistry of primary aminoquinones, Ph.D. thesis, order number 74–19, 241 (1974).Google Scholar
  4. Balba, H. M., G. G., Still, and E. ‘R. Mansager,Pyrolytic method for estimation of bound residues of chloroaniline compounds in plants. J. Assoc. Official Anal. Chemists 62, 237 (1979).Google Scholar
  5. Banjerjee, S., H. C. Sikka, R. Gray, and C. M. Kelly: Photodegradation of 3,3’dichlorobenzidine. Environ. Sci. Technol, 12, 1425 (1978).Google Scholar
  6. Banks, B. E. C.: Biological formation and reactions of the amino group, pp. 517–519. In S. Patai (ed.): The chemistry of the amino group. New York: WileyInterscience (1968).Google Scholar
  7. Barrow, G. M.: Physical Chemistry, 2nd Ed., pp. 544–545. New York: McGraw-Hill, (1966).Google Scholar
  8. Barry, E. J., D. Malejka-Gigant, and H. R. Gutmann: Interaction of aromatic amines with rat liver proteins in vivo. Chem-Biol. Interactions 1, 139 (1969).Google Scholar
  9. Bartha, R.: Biochemical transformations of anilide herbicides in soil. J. Agr. Food Chem. 16, 602 (1968).Google Scholar
  10. Bartha, R, Altered propanil biodegradation in temporarily air-dried soil. J. Agr. Food Chem. 19, 394 (1971).Google Scholar
  11. Bartha, R, and D. Pramer: Pesticide transformation to aniline and azo compounds in soil. Science 156, 1617 (1967).PubMedGoogle Scholar
  12. Biederbeck, V. O., and E. A. Paul: Fractionation of soil humate with phenolic solvents and purification of the nitrigen-rich portion with polyvinylpyrrolidone. Soil Sci. 115, 357 (1973).Google Scholar
  13. Biggar, J. W., U. Mingelgrin, and M. W. Cheung: Equilibrium and kinetics of adsorption of picloram and parathion with soils. J. Agr. Food Chem. 26, 1306 (1978).Google Scholar
  14. Bollag, J-M., P. Blattmann, and T. Laanio: Adsorption and transformation of four substituted anilines in soil. J. Agr. Food Chem. 26, 1302 (1978).Google Scholar
  15. Bollag, J-M., P. Blattmann, and T. Laanio, and S. Russel: Aerobic versus anaerobic metabolism of halogenated anilines by a Paracoccus sp. Microbial Ecol. 3, 65 (1976).Google Scholar
  16. Bordeleau, L. M., J. D. Rosen, and R. Bartha: Herbicide-derived chlorobenzene residues: Pathway of formation. J. Agr. Food Chem. 20, 573 (1972).Google Scholar
  17. Boyland, E., D. Manson, and S. F. D. Orr: The biochemistry of aromatic amines. Biochem. J. 65, 417 (1957).PubMedGoogle Scholar
  18. Brauns, F. E., and D. A. Brauns: The chemistry of lignin, supplement volume 19491958, pp. 587–589. New York: Academic Press (1960).Google Scholar
  19. Bray, H. G., S. P. James, and W. V. Thorpe: Metabolism of the monochloronitrobenzenes in the rabbit. Biochem. J. 64, 38 (1956).PubMedGoogle Scholar
  20. Brown, J. P., G. W. Roehm, and R. J. Brown: Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Samonella/ microsome system. Mutation Res. 56, 249 (1978).PubMedGoogle Scholar
  21. Buser, H-R., and H.P. Bossiiardt: Studies on the possible formation of polychloroazobenzenes in quintozene treated soil. Pest. Sci. 6, 35 (1975).Google Scholar
  22. Cantarow, A., and B. Schepartz: Biochemistry, pp. 347–365. Philadelphia: W. B. Saunders Co. (1967 a).Google Scholar
  23. Cantarow, A., and B. Schepartz, Biochemisty, pp. 280–281. Philadelphia: W. B. Saunders Co. (1967 b).Google Scholar
  24. Cerniglia, C. E., and D. T. Gibson: Metabolism of naphthalene by Cunninghamella elegans. Applied Environ. Microbiol. 34, 363 (1977).Google Scholar
  25. Challis, B. C., and A. R. Butler: Substitution at amino nitrogen, pp. 306–308. In S. Patai (ed.): The chemistry of the amino group. New York: Wiley-Interscience (1968).Google Scholar
  26. Cheshire, M. V., P. A. Cranwell, C. P. Falshaw, A. J. Floyd, and R. D. Haworth: Humic acid-II structure of humic acids. Tetrahedron 23, 1869 (1967).Google Scholar
  27. Chisaka, H., and P. C. Kearney: Metabolism of propanil in soils. J. Agr. Food Chem. 18, 854 (1970).Google Scholar
  28. Chung, K-T., G. E. Fulk, and M. Egan: Reduction of azo dyes by intestinal anaerobes. Applied Environ. Microbiol. 35, 558 (1978).Google Scholar
  29. Clayson, D. B., and R. C. Garner: Carcinogenic aromatic amines and related compounds, pp. 366–461. In C. E. Searle (ed.): Chemical carcinogens. Washington, D. C.: American Chemical Society (1976).Google Scholar
  30. Conant, J. B., and W. D. Peterson: The rate of coupling of diazonium salts with phenols in buffer solutions. J. Amer. Chem. Soc. 52, 1220 (1930).Google Scholar
  31. Conant, J. B., and W. D. Peterson, R. E. Lurz, and B. B. Corson: 1,4-Aminonaphthol hydrochloride. Org. Syn. Collective Vol. I, 49 (1964).Google Scholar
  32. Corbett, J. F.: Benzoquinone imines. Part II. Hydrolysis of p-benzoquinone monoimine and p-benzoquinone diimine. J. Chem. Soc. B 1969, p. 213.Google Scholar
  33. Corberr, M. D., B. R. Chipko, and D. G. Baden: Chloroperoxidase-catalysed oxidations of 4-chloroaniline to 4-chloronitrosobenzene. Biochem. J. 175, 353 (1978).Google Scholar
  34. Corberr, M. D., B. R. Chipko, and D. G. Baden, D. G. Baden, and B. R. Chipko: Arylamine oxidations by chloroperoxidase. Bioorg. Chem. 8, 91 (1979 a).Google Scholar
  35. Corberr, M. D., B. R. Chipko, and D. G. Baden, The nonmicrosomal production of N- (4-chlorophenyl) glycohydroxamic acid from 4-chloronitrosobenzene by rat liver homogenate. Bioorg. Chem. 8, 1 (1979 b).Google Scholar
  36. Corks, G. T., N. J. Bunce, A. L. Beaumont, and R. L. Merrick: Diazonium cations as intermediates in the microbial transformation of chloroanilines to chlorinated biphenyls, azo compounds, and triazenes. J. Agr. Food Chem. 27, 644 (1979).Google Scholar
  37. Cranwell, P. A., and R. D. Hawortii: Humic acid-IV the reaction of alpha-amino acid esters with quinones. Tetrahedron 27, 1831 (1971).Google Scholar
  38. Crawford, D. L., and R. L. Crawford: Microbial degradation of lignin. Presented Amer. Chem. Soc. Meeting, Sept. 12, Washington, D. C. (1979).Google Scholar
  39. Daniel, J. W.: The excretion and metabolism of edible food colours. Toxicol. Applied Pharmacol. 4, 572 (1962).Google Scholar
  40. Daniels, D G H, and B. C. Saunders: Studies in peroxidase action. Part VIII. The oxidation of p-chloroaniline. A reaction involving dechlorination. J. Chem. Soc. 1953, 822.Google Scholar
  41. Diaciienko, G. W.: Determination of several industrial aromatic amines in fish. Environ. Sci. Technol. 13, 329 (1979).Google Scholar
  42. Doneson, K. S., and F. A. Rose: Sulfoconjugation and sulfohydrolysis, pp. 239–325. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, Vol. I. New York: Academic Press (1970).Google Scholar
  43. Dubin, P., and K. L. Wright: Reduction of azo food dyes in cultures of Protens vulgaris. Xenobiotica 5, 563 (1975).PubMedGoogle Scholar
  44. Dutton, G. J.: The biosynthesis of glucuronides, pp. 185–300. In G. J. Dutton (ed.): Glucuronic acid free and combined. New York: Academic Press (1966).Google Scholar
  45. Engelhardt, G., P. Wallnofer, G. Fuchsbichler, and W. Baumeister: Bacterial transformations of 4-chloroaniline. Chemosphere 2/3, 85 (1977).Google Scholar
  46. Erickson, M. D., and E. D. Pellizzari• Identification and analysis of polychlorinated biphenyls and other related chemicals in municipal sewage sludge samples. Washington, D. C.: Environmental Protection Agency 560/6–77–021 (1977).Google Scholar
  47. Ewing, B. B., E. S. K. Chian, J. C. Cook, C. A. Evans, P. K. Hopke, and E. G. Perkins: Monitoring to detect previously unrecognized pollutants in surface waters. Washington, D. C.: Environmental Protection Agency 560/7–77–001 (1977).Google Scholar
  48. Fletcher, C. L., and D. D. Kaufman: Hydroxylation of monochloroaniline pesticide residues by Fusarium oxysporum schlecht. J. Agr. Food Chem. 27, 1127 (1979).Google Scholar
  49. Foussereau, J.: Allergic eczema from disperse yellow 3 in nylon stockings and socks. Trans. St. Johns Hospital Dermatol. Soc. 58, 75 (1972).Google Scholar
  50. Freund, W.: A new synthesis of arsonic acids, part I. Coupling of a, p-unsaturated carbonyl compounds with diazotized p-arsonilic acid. J. Chem. Soc. 1951, 1943.Google Scholar
  51. Frobisher, M., R. D. Hinsdill, K. T. Crabtree, and C. R. Goodheart: Fundamentals of microbiology, pp. 669–673. Philadelphia: W. B. Saunders Co. (1974).Google Scholar
  52. Fuchsbichler, G., and A. Süss: Desorption and austausch von sorbiertem 4-chloranilin. Chemosphere 4, 345 (1978).Google Scholar
  53. Fuhremann, T. W., and E. P. Lichtenstein: Release of soil-bound methyl [14C] parathion residues and their uptake by earthworms and oat plants. J. Agr. Food Chem. 26, 605 (1978).Google Scholar
  54. Games, L. M., and R. A. Hites: Composition, treatment efficiency, and environmental significance of dye manufacturing plant effluents. Anal. Chem. 49, 1433 (1977).Google Scholar
  55. Golab, T., W. A. Althans, and H. L. Wooten: Fate of [14C] trífluralin in soil. J. Agr. Food Chem. 27, 163 (1979).Google Scholar
  56. Gorrod, D. W.: Differentiation of various types of biological oxidation of nitrogen in organic compounds. Chem.-Biol. Interactions 7, 289 (1973).Google Scholar
  57. Hauser, C. R., and D. S. Breslow: Condensations. XV. The electronic mechanism of the diazo coupling reaction. J. Amer. Chem. Soc. 63, 418 (1941).Google Scholar
  58. Helling, C. S., and A. E. Krivonak: Physiochemical characteristics of bound dinitroaniline herbicides in soil. J. Agr. Food Chem. 26, 1156 (1978 a).Google Scholar
  59. Helling, C. S., and A. E. Krivonak, Biological characteristics of bound dinitroaniline herbicides in soils. J. Agr. Food Chem. 26, 1164 (1978 b).Google Scholar
  60. Hlcxibo’rrom, W. J.: Reactions of organic compounds, 3rd Ed., pp. 284–287. New York: Wiley (1957).Google Scholar
  61. Hill, D. L., T.W. Siiiir, and R. F. Struck: Macromolecular binding and metabolism of the carcinogen 4-chloro-2-methylaniline Cancer Res. 39, 2528 (1979).PubMedGoogle Scholar
  62. Hsu, T-S., and R. Bartha: Interaction of pesticide-derived chloroaniline residues with soil organic matter. Soil Sci. 116 444 (1974 a).Google Scholar
  63. Hsu, T-S., and R. Bartha, Biodegradation of chloroaniline-humus complexes in soil and in culture solution. Soil Sci. 118 213 (1974 b).Google Scholar
  64. Hughes, E. D., C. K. Incold, and J. H. Ridd: Nitrosation, diazotisation, and deamination. Part I. Principles, background, and method for the kinetic study of diazotisation. J. Chem. Soc. 1958 a, 58.Google Scholar
  65. Hughes, E. D., C. K. Incold, and J. H. Ridd,Part II. Second and third order diazotisation of aniline in dilute perchloric acid. J. Chem. Soc. 1958 b 65.Google Scholar
  66. Hughes, E. D., C. K. Incold, and J. H. Ridd, and J. H. Ridd: Part III. Zeroth order diazotisation of aromatic amines in carboxylic acid buffers. J. Chem. Soc. 1958 c 70.Google Scholar
  67. Hughes, E. D., C. K. Incold, and J. H. Ridd, C. K. Ingold, and J. H. Ridd: Part IV. Hydrogen ion catalysis in the diazotisa-tion of o-chloroaniline in dilute perchloric acid. J. Chem. Soc. 1958 d 77.Google Scholar
  68. Hughes, E. D., C. K. Incold, and J. H. Ridd, and J. H. Ridd: Part V. Catalysis by anions of strong acids in the diazotisation of aniline and of o-chloroaniline in dilute perchloric acid. J. Chem. Soc. 1958 e, 82.Google Scholar
  69. Hughes, E. D., C. K. Incold, and J. H. Ridd, C. K. Incold, and J. H. Ridd: Part VI. Comparative discussion of mechanisms of N- and 0-nitrosation with special reference to diazotisation. J. Chem. Soc. 1958 f 88.Google Scholar
  70. Irving, C. C.: Conjugates of N-hydroxy compounds, pp. 53–119. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, Vol. I. New York: Academic Press (1970).Google Scholar
  71. Iwan, J., G-A. Hoyer, D. Rosenberg, and D. Coller’ Transformations of 4-chloroo-toluidine in soils: Generation of coupling products by one-electron oxidation. Pest. Sci. 7, 621 (1976).Google Scholar
  72. Jenkins, R. L., J. E. Haskins, L. G. Carmona, and R. B. Baird: Chlorination of benzidine and other aromatic amines in aqueous environments. Arch. Environ. Contam. Toxicol. 7, 301 (1978).PubMedGoogle Scholar
  73. Kadlubar, F. F., J. A. Miller, and E. C. Miller: Guanyl 06-arylamination and O’-arylation of DNA by the carcinogen N-hydroxy-l-naphthylamine. Cancer Res. 38, 3628 (1978).PubMedGoogle Scholar
  74. Kao, J., J. Faulkner, and J. W. Bridges: Metabolism of aniline in rats, pigs and sheep. Drug Metab. Distrib. 6, 549 (1978).Google Scholar
  75. Katan, J., and E. P. Lichtenstein: Mechanisms of production of soil-bound residues of [’4C] parathion by microorganisms. J. Agr. Food Chem. 25, 1404 (1977).Google Scholar
  76. Kaubisca, N., J. W. Daly, and D. M. Jerina: Arene oxides as intermediates in the oxidative metabolism of aromatic compounds. Isomerization of methyl-substituted arene oxides. Biochem. 11, 3080 (1972).Google Scholar
  77. Kaufman, D. D., J. R. Plimmer, and U. I. Klingbiel• Microbial oxidation of 4-chloroaniline. J. Agr. Food Chem. 21, 127 (1973).Google Scholar
  78. Kearney, P., and J. R. Plimmer: Metabolism of 3,4-dichloroaniline in soils. J. Agr. Food Chem. 20, 584 (1972).Google Scholar
  79. Khan, S. U.: Adsorption of pesticide by humic substances. A review. Environ. Letters 3, 1 (1972).Google Scholar
  80. Kriek, E.: On the mechanism of action of carcinogenic aromatic amines, I. Binding of 2-acetylaminofluorene and N-hydroxy-2-acetylaminofluorene to rat-liver nucleic acids in vivo. Chem.-Biol. Interactions 1, 3 (1969).Google Scholar
  81. Kriek, E, J. A. Miller, and E. C. Miller: 8-(N-2-Fluorenylacetamido) guanosine, an arylamidation reaction product of guanosine and the carcinogen N-acetoxy-N-2fiuorenylacetamide in neutral solution. Biochem. 6, 177 (1967).Google Scholar
  82. Land, E. J.: Electronic spectra and kinetics of aromatic free radicals. In G. Porter (ed): Progress in reaction kinetics, vol. 3, pp. 394–399. New York: Pergamon (1965).Google Scholar
  83. Land, E. J, and G. Porter: Primary photochemical processes in aromatic molecules, part 8. Absorption spectra and acidity constants of anilio radicals. Trans. Faraday Soc. 59, 2027 (1963).Google Scholar
  84. Lichtenstein, E. P., J. Katan, and B. N. Anderecg: Binding of “persistent” and “nonpersistent” 14C-labeled pesticides in an agricultural soil. J. Agr. Food Chem. 25, 43 (1977).Google Scholar
  85. Lu, P-Y., R. L. Metcalf, N. Plummer, and D. Mandel: The environmental fate of three carcinogens: Benzo-(a)-pyrene, benzidine, and vinyl chloride evaluated in laboratory model ecosystems. Arch. Environ. Contam. Toxicol. 6, 129 (1977).PubMedGoogle Scholar
  86. Macdonald, J. C., A. M. Plescia, E. C. Miller, and J. A. Miller: The metabolism of methylated aminoazo dyes. III. The demethylation of various N-methyl-C14aminoazo dyes in vivo. Cancer Res. 13, 292 (1953).PubMedGoogle Scholar
  87. March, J.: Advanced organic chemistry: Reactions, mechanisms, and structure, p. 555. New York: McGraw-Hill (1968 a).Google Scholar
  88. March, J.:, Advanced organic chemistry: Reactions, mechanisms, and structure, pp. 281–302. New York: McGraw-Hill (1968 b).Google Scholar
  89. Marsh, C. A.: Chemistry of D-glucuronic acid and its glycosides, pp. 3–136. In G. J. Dutton (ed.): Glucuronic acid free and combined. New York: Academic Press (1966).Google Scholar
  90. Mason, R., and S. C. Sweeney: A literature survey oriented towards adverse environmental effects resultant from the use of azo compounds, brominated hydrocarbons, EDTA, formaldehyde resins and o–nitrochlorobenzene. Washington, D. C.: Environmental Protection Agency 560/2–76–005 (1976).Google Scholar
  91. Mccormicx, N. G., J. H. Cornell, and A. M. Kaplan: Identification of biotransformation products from 2,4-dinitrotoluene. Applied Environ. Microbiol. 35, 945 (1978).Google Scholar
  92. Mccormicx, N. G., J. H. Cornell, and A. M. Kaplan, F. E. F.Eherry, and H. S. Levinson: Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Applied Environ. Microbiol. 31, 949 (1976).Google Scholar
  93. Meylan, W. M., P. H. Howard, and M. Sack: Chemical market input/output analysis of selected chemical substances to assess sources of environmental contamination: Task I. Naphthylamines. Washington, D. C.: Environmental Protection Agency 560/6–77–002 (1976).Google Scholar
  94. Michaelis, L., and E. S. Hill: Potentiometric studies on semiquinones. J. Amer. Chem. Soc. 55, 1481 (1933).Google Scholar
  95. Miller, E. C., F. F. Kadlubar, J. A. Miller, H. C. Pitot, and N. R. Drinkwater: The N-hydroxy metabolites of N-methyl-4-aminoazobenzene and related dyes as proximate carcinogens in the rat and mouse. Cancer Res. 39, 3411 (1979).PubMedGoogle Scholar
  96. Minard, R. D., S. Russel, and J-M. Bollag: Chemical transformations of 4-chloroaniline to a triazene in a bacterial culture medium. J. Agr. Food Chem. 25, 841 (1977).Google Scholar
  97. Moreale, A., and R. van Bladel: Soil interactions of herbicide-derived aniline residues: A thermodynamic approach. Soil Sci. 127, 1 (1979).Google Scholar
  98. Morton, K. C., C. M. King, and K. P. Baetcke: Metabolism of benzidine to Nhydroxy-N,N’-diacetylbenzidine and subsequent nucleic acid binding and mutagenicity. Cancer Rec. 39, 3107 (1979).Google Scholar
  99. Neumann, H-G.: Ultimate electrophilic carcinogens and cellular nucleophilic reactants. Arch. Toxikol. 32, 27 (1974).Google Scholar
  100. Oesch, F.: Mammalian epoxide hydiases: Inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3, 305 (1972).Google Scholar
  101. Ogata, Y., and Y. Takagi: Kinetics of the condensation of anilines wtih nitrosobenzenes to form azobenzenes. J. Amer. Chem. Soc. 80, 3591 (1958).Google Scholar
  102. Paris, D. F., W. C. Steen, and G. L. Baughman: Kinetics of microbial transformations of pollutants in natural waters. Presented Amer. Chem. Soc. Meeting, Sept. 10, Washington, D. C. (1979).Google Scholar
  103. Pierce, R. H., JR., C. E. Olney, and G. T. Felbace, JR.: Pesticide adsorption in soils and sediments. Environ. Letters 1, 157 (1971).Google Scholar
  104. Pierce, R. H., JR., C. E. Olney, and G. T. Felbace, -DDT adsorption to suspended particulate matter in sea water. Geochim. Cosmochim. Acta 38, 1061 (1974).Google Scholar
  105. Plimmer, J. R., P. C. Kearney, H. Chisaka, J. B. Yount, and U. I. Klingebiel: 1,3-Bis (3,4-dichlorophenyl) triazene from propanil in soils. J. Agr. Food Chem. 18, 859 (1970).Google Scholar
  106. Poland, A., and E. Glover: 3,4,3’,4’-Tetrachloro-azoxybenzene and -azobenzene: Potent inducers of aryl hydrocarbon hydroxylase. Science 194, 627 (1976).PubMedGoogle Scholar
  107. Riffaldi, R., and M. Schnitzer. Effect of 6N HCl hydrolysis on the analytical characteristics and chemical structure of humic acids. Soil Sci. 115, 349 (1973).Google Scholar
  108. Roberts, J. D. and M. C. Caserio: Basic principles of organic chemistry, pp. 915–916. New York: W. A. Benjamin (1965 a).Google Scholar
  109. Roberts, J. D. and M. C. Caserio, Basic principles of organic chemistry, pp. 892–895. New York: W. A. Benjamin (1965 b).Google Scholar
  110. Rondestvedt, C. S., JR.: Arylation of unsaturated compounds by diazonium salts. Organic Reactions 11, 189 (1960).Google Scholar
  111. Saunders, B. C., A. G. Holmes-Siedle, and B. P. Stark: Peroxidase. Washington, D. C.: Butterworths (1964).Google Scholar
  112. Schnitzer, M., and S. U. Khan: Humic substances in the environment. New York: Marcel Dekker (1972).Google Scholar
  113. Shafer, N., and R. Shafer: Potential of carcinogenic effects of hair dyes. N. Y. State J. Med. 76, 394 (1976).PubMedGoogle Scholar
  114. Sjoblad, R. D., and J-M. Bollag: Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Applied Environ. Microbiol. 33, 906 (1977).Google Scholar
  115. Smith, R. L., and R. T. Williams: Implications of the conjugation of drugs and other exogenous compounds, pp. 457–491. In G. J. Dutton (ed.): Glucuronic acid free and combined. New York: Academic Press (1966).Google Scholar
  116. Sollenberger, P. Y., and R. B. Martin: Carbon-nitrogen and nitrogen-nitrogen double bond condensation reactions, pp. 349–406. In S. Patai (ed.): Chemistry of the amino group. New York: Wiley-Interscience (1968).Google Scholar
  117. Sorensen, J.: Occurrence of nitric and nitrous oxides in a coastal marine sediment. Applied Environ. Microbiol. 36, 809 (1978).Google Scholar
  118. Sprott, G. D., and C. T. Corke: Formation of 3,3’,4,4’-tetrachloroazobenzene from 3,4-dichloroaniline in Ontario soils. Can. J. Microbiol. 17, 235 (1971).Google Scholar
  119. Stevenson, F. J., and K. M. Col: Infrared spectra of humic acids and related substances. Geochim Cosmochim. Acta 35, 471 (1971).Google Scholar
  120. Still, G. G.: Metabolism of 3,4-dichloropropionanilide in plants: the metabolic fate of the 3,4-dichloroaniline moiety. Science 159, 992 (1968).PubMedGoogle Scholar
  121. Tweedy, B. G., C. Loeppky, and J. A. Ross: Metobromuron: acetylation of the aniline moiety as a detoxification mechanism. Science 168, 482 (1970).PubMedGoogle Scholar
  122. Urushigawa, Y., and Y. Yonezawa: Chemico-biological interactions in biological purification system II. biodegradation of azo compounds by activated sludge. Bull. Environ. Contam. Toxicol. 17, 214 (1977).PubMedGoogle Scholar
  123. van Alfen, N. K., and T. Kosuge: Metabolism of the fungicide 2,6-dichloro-4nitroaniline in soils, J. Agr. Food Chem. 24, 584 (1976).Google Scholar
  124. Vets, C. A.: Aromatic amines: The present status of the problem. Ann. Occupational Hyg. 15, 11 (1972).Google Scholar
  125. Viswanathan, R., W. Klein, and F. Korte: Separation and identification of metabolites excreted by rats after long-term oral administration of imugan 14C. Chemosphere 1, 71 (1978 a).Google Scholar
  126. I. Scheunert, J. Komli, W. Klein, and F. Korte: Long-term studies on the fate of 3,4-dichloroaniline -“C in a plant-soil-system under outdoor conditions. J. Environ. Sci. Health B13, 243 (1978 b).Google Scholar
  127. Wheeler, L A, F B Soderberg, and P. Goldman: The relationship between nitro group reduction and the intestinal microfiora. J. Pharmacol. Expt. Therap. 195, 135 (1975).Google Scholar
  128. Wistar, R., and P. D. Bartlett: Kinetics and mechanisms of the coupling of diazonium salts with aromatic amines in buffer solutions. J. Amer. Chem. Soc. 63, 413 (1941).Google Scholar
  129. Wood, J. M., R. L. Crawford, E. Münck, R. Zimmerman, J. D. Lipscomb, R. S. Stephens, J. W. Bromley, L. Que, JR., J. B. Howard, and W. H. Orme-Johnson: Structure and function of dioxygenases. One approach to lignin degradation. J. Agr. Food Chem. 25, 698 (1977).Google Scholar
  130. Wszolok, P. C., and M. Alexander: Effect of desorption rate on the biodegradation of n-alkylamines bound to clay. J. Agr. Food Chem. 27, 410 (1979).Google Scholar
  131. Yamashina, I., S. Shikata, and F. Egami: Studies on enzymatic reduction of aromatic nitro, nitroso, and hydroxylamine compounds. Bull. Chem. Soc. Japan 27, 42 (1954).Google Scholar
  132. Yau, R. Y., D. H. Mcrae, and H. F. Wilson: Metabolism of 3’,4’-dichloropropionanilide: 3,4-Dichloroaniline-lignin complex in rice plants. Science 161, 376 (1968).Google Scholar
  133. Yonezawa, Y., and Y. Urushigawa: Chemico-biological interactions in biological purification systems. I. Growth inhibition effect of azo compounds on activated sludge microorganisms. Bull. Environ. Contam. Toxicol. 17, 208 (1977).Google Scholar
  134. Yurawecz, M. P.: GLC and mass spectrometric determination of monochloronitrobenzene residues in Mississippi River fish. Presented AOAC meeting, Oct. 17, Washington, D. C. (1978).Google Scholar
  135. Zavon, M. R.: Benzidine exposure as a cause of bladder tumors. Arch. Environ. Health 27, 1 (1973).PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • George E. Parris
    • 1
  1. 1.Division of Chemical Technology HFF-424Bureau of Foods, Food and Drug AdministrationUSA

Personalised recommendations