An introduction to the metabolism of pyrethroids

  • John Chambers
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 73)


The metabolism of both the natural and synthetic pyrethroids1 is a complicated and overpowering subject. In this report a historical review of the literature is presented in the hope that the facts which comprise the current wealth of information can be presented individually, roughly in order of their discovery. It is not intended to cover all the literature since reviews of specific aspects are readily available but it is intended to mention all the salient points. It is also hoped that some interest will arise from seeing how progress in these metabolism studies depended on advances in other areas and how the subject of these studies has changed from insects to mammals and plants as fears about human and environmental safety have increased. We now have the seemingly paradoxical situation in which metabolism studies of insecticides are undertaken on almost anything other than insects.


Synthetic Pyrethroid Mixed Function Oxidase Cabbage Looper American Cockroach Piperonyl Butoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernathy, C. O., and J. E. Casida; Pyrethroid insecticides: Esterase cleavage in relation to selective toxicity. Science 179, 1235 (1973).PubMedCrossRefGoogle Scholar
  2. Abernathy, C. O., and K. Ueda, J. L. Engel, L. C. Gaughan, and J. E. Casida: Substrate-specificity and toxicological significance of pyrethroid-hydrolysing esterases of mouse liver microsomes. Pest. Bioehem. Physiol. 3, 300 (1973).CrossRefGoogle Scholar
  3. Bedford, C. T.: Agricultural and industrial chemicals, pyrethroids. In D. E. Hathaway: Foreign compound metabolism in mammals. Vol. 4, p. 120. London: Chemical Society Specialist Periodical Report (1977).Google Scholar
  4. Bigley, W. S., and F. W. Plapp Jr.: Metabolism of cis-and trans-[14C] permethrin by the tobacco budworm and the bollworm. J. Agr. Food Chem. 26, 1128 (1978).CrossRefGoogle Scholar
  5. Casida, J. E.: Biochemistry of the pyrethrins. In J. E. Casida (ed.): Pyrethrum the natural insecticide. 1 ed., p. 101. New York: Academic Press (1973).Google Scholar
  6. Casida, J. E., E. C. Ktmmel, M. Elliott, and N. F. Janes: Oxidative metabolism of pyrethrins in mammals. Nature 230, 326 (1971).PubMedCrossRefGoogle Scholar
  7. Casida, J. E., K. Ueda, L. C. Gaughan, L. T. Jao, and D. M. Soderlund: Structure-biodegradability relationships in pyrethroid insecticides. Arch. Environ. Contam. Toxicol. 3, 491 (1976).CrossRefGoogle Scholar
  8. Chamberlain, R. W.: An investigation on the action of piperonyl butoxide with pyrethrum. Amer. J. Hyg. 52, 153 (1950).PubMedGoogle Scholar
  9. Chang, S. C., and C. W. Kearns: Metabolism in vivo of 14C-labelled pyrethrin I and cinerin I by house flies with special reference to the synergistic mechanism. J. Econ. Entomol. 57, 397 (1964).Google Scholar
  10. Eldel, E. L.: Stereochemistry of carbon compounds, p. 92. New York: McGraw-Hill (1962).Google Scholar
  11. Elliott, M., A. W. Farnham, N. F. Janes, P. H. Needham, and D. A. Pulman: In-secticidally active conformations of pyrethroids. In G. K. Kohn (ed.): Mechanisms of pesticide action, p. 80. Washington: Amer. Chem. Soc. (1974 a).CrossRefGoogle Scholar
  12. Elliott, M., A. W. Farnham, N. F. Janes, P. H. Needham, and D. A. Pulman: Insecticidal activity of the pyrethrins and related compounds. VII: Insecticidal dihalovinyl analogues of cis-and trans-ehrysanthemates. Pest. Sci. 6, 537 (1975).CrossRefGoogle Scholar
  13. Elliott, M., A. W. Farnham, N. F. Janes, P. H. Needham, and D. A. Pulman, and J.H. Stevenson: A photostable pyrethroid. Nature 246, 169 (1973).PubMedCrossRefGoogle Scholar
  14. Elliott, M., N. F. Janes, E. C. Kimmel, and J. E. Casida: Metabolic fate of pyrethrin I, pyrethrin II, and allethrin administered orally to rats. J. Agr. Food Chem. 20, 300 (1972).CrossRefGoogle Scholar
  15. Elliott, M., N. F. Janes, and D. A. Pulman: The pyretlirins and related compounds. Part XVIII. Insecticidal 2,2-dimethylcyclopropanecarboxylates with new unsaturated 3-sub-stituents. J. Chem. Soc. (Perkin I), p. 2470 (1974 b).Google Scholar
  16. Farnham, A. W.: Changes in cross-resistance patterns of houseflies selected with natural pyrethrins or resmethrin. Pest. Sci. 2, 138 (1971).CrossRefGoogle Scholar
  17. Godin, P. J., J. H. Stevenson, and R. M. Sawicki: The insecticidal activity of jas-molin II and its isolation from pyrethrum. J. Econ. Entomol. 58, 548 (1965).Google Scholar
  18. Godin, P. J., R. J. Sleeman, M. Snabey, and E. M. Thain: The jasmolins, new insecticidally active constituents of Chrysanthemum cinerariaefolium: J. Chem. Soc., p. 332 (1966).Google Scholar
  19. Hayashi, A., T. Saito, and K. Iyatomi: Studies on the increment of the efficacy of insecticides (VIII). Metabolism of 3H-pyrethroids in the adult house fly. Botyu Kagaku 33, 90 (1968).Google Scholar
  20. Head, S. W.: The composition of pyrethrum extract. Pyrethrum Post 10, 17 (1969)Google Scholar
  21. Hopkins T. L. and W. E. Robbins: The absorption, metabolism and excretion of 14C-labelled allethrin by houseflies. J. Econ. Entomol. 50, 684 (1957).Google Scholar
  22. Jao, L. T., and J. E. Casida: Esterase inhibitors as synergists for (+)trans-chrysan-themate insecticide chemicals. Pest. Biochem. Physiol. 4, 456 (1974 a).CrossRefGoogle Scholar
  23. Jao, L. T., and J. E. Casida: Insect pyrethroid-hydrolysing esterases. Pest. Biochem. Physiol. 4, 465 (1974 b).CrossRefGoogle Scholar
  24. Miyamoto, J.: Degradation, metabolism and toxicity of synthetic pyrethroids Environ. Health Perspect. 14, 15 (1976).CrossRefGoogle Scholar
  25. Miyamoto, J.:Terminal residues of bioresmethrin. In R. Greenhalgh: IUPAC Commission on Terminal Residues. J. Assoc. Official Anal. Chemists 61, 856 (1978).Google Scholar
  26. Miyamoto, J., T. Nishida, and K. Ueda: Metabolic fate of resmethrin, 5-benzyl-3-furylmethyl dl-trans-chrysanthemate in the rat. Pest. Biochem. Physiol. 1, 293 (1971).CrossRefGoogle Scholar
  27. Miyamoto, J., Y. Sato, K. Yamamoto, M. Endo, and S. Suzuki: Biochemical studies on the mode of action of pyrethroidal insecticides. Part 1. Metabolic fate of phthalthrin in mammals. Agr. Biol. Chem. 32, 628 (1968).CrossRefGoogle Scholar
  28. Miyamoto, J., and T. Suzuki: Metabolism of tetramethrin in houseflies in vivo. Pest Biochem Physiol. 3, 30 (1973).CrossRefGoogle Scholar
  29. Miyamoto, J., and T. Suzuki, and C. Nakae: Metabolism of phenothrin or 3-phenoxybenzyl d-trans-chrysanthemumate in mammals. Pest. Biochem. Physiol. 4, 438 (1974).CrossRefGoogle Scholar
  30. O’brien, R. D.: Insecticides, action and metabolism. New York: Academic Press (1967).Google Scholar
  31. Pellegrini, J. P., A. C. Miller, and R. V. Sharpless: Biosynthesis of radioactive pyrethrins using 14CO2. J. Econ. Entomol. 45, 532 (1952).Google Scholar
  32. Ruzo, L. O., and J. E. Casida: Metabolism and toxicology of pyrethroids with dihalo-vinyl substituents. Environ. Health Perspect. 21, 285 (1977).PubMedCrossRefGoogle Scholar
  33. Ruzo, L. O., T. Unai, and J. E. Casida: Pyrethroid metabolism: decamethrin. Abstr. Papers Amer. Chem. Soc., 174 Nat. Meeting. (1977).Google Scholar
  34. Ruzo, L. O., T. Unai, and J. E. Casida: Decamethrin metabolism in rats. J. Agr. Food Chem. 26, 918 (1978)CrossRefGoogle Scholar
  35. Shono, T., K. Ohsawa, and J. E. Casida: Metabolism of trans-and cis-permethrin, trans-and cis-eypermethrin, and decamethrin by microsomal enzymes. J. Agr. Food Chem. 27, 316 (1979).CrossRefGoogle Scholar
  36. Shono, T., T. Unai, and J. E. Casida: Metabolism of permethrin isomers in American cockroach adults, housefly adults, and cabbage looper larvae. Pest. Biochem. Physiol. 9, 96 (1978).CrossRefGoogle Scholar
  37. Soderlund, D. M.: Structure-biodegradability relationships in pyrethroid insecticides. Dissertation Abstr. Intern. B 37, No. 9, 4311 (1977).Google Scholar
  38. Soderlund, D. M., and J. E. Casida: Substrate specificity of mouse-liver microsomal enzymes in pyrethroid metabolism. In: Synthetic pyrethroids (Amer. Chem. Soc. Symp. Ser No. 42), p. 162. Washington: Amer. Chem. Soc. (1977 a).Google Scholar
  39. Soderlund, D. M., and J. E. Casida: Stereospecificity of pyrethroid metabolism in mammals. In: Synthetic pyrethroids (Amer. Chem. Soc. Symp. Ser. No. 42), p. 173. Washington: Amer Chem. Soc. (1977 b).Google Scholar
  40. Suzuki, T., and J. Miyamoto: Metabolism of tetramethrin in houseflies and rats in vitro. Pest. Biochem. Physiol. 4, 86 (1974).CrossRefGoogle Scholar
  41. Suzuki, T., and J. Miyamoto: Purification and properties of pyrethroid earboxyesterase in rat liver micro-some. Pest. Biochem. Physiol. 8, 186 (1978).CrossRefGoogle Scholar
  42. Ueda, K., L. C. Gaughan, and J. E. Casdda: Metabolism of (+)trans-and (+)cis-resmethrin in rats. J. Agr. Food Chem. 23, 106 (1975 a).CrossRefGoogle Scholar
  43. Ueda, K., L. C. Gaughan, and J. E. Casdda: Metabolism of four resmethrin isomers by liver microsomes. Pest. Biochem. Physiol. 5, 280 (1975 b).CrossRefGoogle Scholar
  44. Verschoyle, R. D., and J. M. Barnes: Toxicity of natural and synthetic pyrethrins to rats. Pest. Biochem. Physiol. 2, 308 (1972).CrossRefGoogle Scholar
  45. Winteringham, F. P. W., A. Harrison, and P. M. Bridges: Absorption and metabolism of [14C]-pyrethroids by the adult housefly in vivo. Biochem. J. 61, 359 (1955).PubMedGoogle Scholar
  46. Woke, P. A.: Inactivation of pyrethrum after ingestion by the southern armyworm and during incubation with its tissues. J. Agr. Res. 58, 289 (1939); through Chem. Abstr. 33, 47327 (1939).Google Scholar
  47. Yamamoto, I., and J. E. Caseda: O-Demethyl pyrethrin II analogs from oxidation of pyrethrin I, allethrin, dimethrin and phthalthrin by a housefly enzyme system. J. Econ. Entomol. 59, 1542 (1966).Google Scholar
  48. Yamamoto, I., M. Elliott, and J. E. Caseda: The metabolic fate of pyrethrin I, pyrethrin II, and allethrin. BuU. World Health Org. 44, 347 (1971).Google Scholar
  49. Yamamoto, I., E. C. Kimmel, and J. E. Casdda: Oxidative metabolism of pyrethroids in house-flies. J. Agr. Food Chem. 17, 1227 (1969).CrossRefGoogle Scholar
  50. Zedd, M. M. I., P. A. Dahm, R. E. Hein, and R. H. Mcfarland: Tissue distribution, excretion of 14CO2 and degradation of radioactive pyrethrins administered to the American cockroach. J. Econ. Entomol. 46, 324 (1953).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • John Chambers
    • 1
  1. 1.Slough Laboratory (formerly Pest Infestation Control Laboratory)Ministry of Agriculture, Fisheries and FoodSloughEngland

Personalised recommendations