Complexions of Baryon and Lepton Number Violations Within Maximal Symmetries

  • Jogesh C. Pati


Scenarios for filling the grand plateau between 102 and 1015 GeV with elementary or composite structures are outlined. Some of the associated experimental consequences, which would be of importance for future high energy accelerators and cosmic ray physics, are listed. Observing that grand unification based on maximal symmetries permit intermediate mass-scales as low as about 103–105 GeV, the origin of baryon, lepton and fermion number-violations within maximally gauged symmetries and the complexions of these violations arising within such symmetries are noted. In particular it is noted that maximal symmetries permit not only (B-L)-conserving proton-decay mode (p→e+πO etc.), but also (B-L)-violating modes, i.e. p→+e+pions, p→3e+pions and p→3e+pions, as well as n-ǹ-oscillations and neutrinoless double ß-decay. This is in contrast to nonmaximal symmetries such as SU(5) and SO(10). where the possible existence of these modes is not permitted. The relative rates of the various B,L-violating processes depend on the pattern of spontaneous breakdown of the maximal symmetry. For the special case that the maximal symmetry breaks through a single mass scale toSU(2)xU(1)xSU(3)col the standard result that there exists a grand “desert” and that the (B-L)-conserving modes (p→>e+πO, etc.) should dominate, with sin2 ϴW 0.21 and grand unification mass 1015 GeV, emerges. In general, though, maximal symmetries would permit a richer complexion of phenomena with intermediate mass-scales and no desert. Searches for (B-L) violating proton-decay modes, n-ù oscillations and neutrinoless double ß-decay can serve as probes for the possible existence of the intermediate mass scales.


Gauge Boson Lepton Number Fermion Number Maximal Symmetry Grand Unification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Footnotes

  1. 1.
    J. C. Pati and Abdus Salam, “Lepton hadron unification” (unpublished), reported by J. D. Bjorken in the Proceedings of the 15th High Energy Physics Conference held at Batavia, Vol. 2, p. 304, September (1972);Google Scholar
  2. 1a.
    J. C. Pati and Abdus Salam, Phys. Rev. D8, 1240 (1973).Google Scholar
  3. 2.
    J. C. Pati and Abdus Salam, Phys. Rev. Letters 31, 661 (1973);CrossRefGoogle Scholar
  4. 2a.
    J. C. Pati and Abdus Salam, Phys. Rev. D10, 275 (1974);Google Scholar
  5. 2a.
    J. C. Pati and Abdus Salam, Phys. Letters 58B, 333 (1975).Google Scholar
  6. 3.
    J. C. Pati, Abdus Salam and J. Strathdee, Il Nuovo Cimento 26A, 77 (1975);Google Scholar
  7. 3a.
    J. C. Pati, Proceedings of the Second Orbis Scientiae, Coral Gables, Florida, p. 253, January (1975);Google Scholar
  8. 3b.
    J. C. Pati, S. Sakakibara and Abdus Salam, ICTP, Trieste, preprint IC/75/93 (1975), unpublished.Google Scholar
  9. 4.
    H. Georgi and S. L. Glashow, Phys. Rev. Letters 32 438 (1974).CrossRefGoogle Scholar
  10. 5.
    H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).CrossRefGoogle Scholar
  11. 6.
    V. Elias, J. C. Pati and Abdus Salam, Phys. Rev. Lett. 40, 920 (1978);CrossRefGoogle Scholar
  12. 6a.
    V. Elias and S. Rajpoot, Phys. Lett. (1979).Google Scholar
  13. 7.
    H. Fritzsch and P. Minkowski, Ann. Phys. (NY) 93, 193 (1975);CrossRefGoogle Scholar
  14. 7a.
    H. Georgi, Proc. AIP Conf., Williamsburg (1974).Google Scholar
  15. 8.
    B. Deo, J. C. Pati, S. Rajpoot and Abdus Salam, “Multiplet stage descent of maximal symmetries,” unpublished 1979;Google Scholar
  16. 8a.
    J. C Pati and Abdus Salam; Proc Grand Unification Workshop held at Durham, New Hampshire (1980).Google Scholar
  17. 9.
    J. C. Pati and Abdus Salam, Phys. Rev. D10, 275 (1974); Proceedings of the EPS International Conference on High Energy Physics, Palermo June (1975), p. 171 (Ed. A. Zichichi);Google Scholar
  18. 9a.
    J. C. Pati, Abdus Salam and J. Strathdee, Phys. Lett. 59B, 265 (1975);Google Scholar
  19. 9b.
    J. C. Pati “Magnetism as the origin of preon binding,” University of Maryland Technical Report 80-095 (April 1980);Google Scholar
  20. 9b.
    J. C. Pati Phys. Lett., Jan 1 (1981);Google Scholar
  21. 9c.
    J. C. Pati, Abdus Salam and J. Strathdee, Trieste Preprint, IC/80/180 to appear in Nuclear Physics.Google Scholar
  22. 10.
    Several other authors have also worked on composite models of quarks and leptons from different aspects. An incomplete listing is as follows: K. Matumoto. Progr. Theoret. Phys. 52, 1973 (1974);CrossRefGoogle Scholar
  23. 10a.
    O. W. Greenberg, Phys. Rev. Lett., 35, 1120 (1975);CrossRefGoogle Scholar
  24. 10b.
    H. J. Lipkin, Proceedings of the EPS International Conference on High Energy Physics, Palermo, June (1975), p. 609 (Ed. A. Zichichi);Google Scholar
  25. 10c.
    J. D. Bjorken and C. H. Woo (unpublished); W. Krolikowski, ICTP, Trieste, preprints IC/79/144 and IC/80/1;Google Scholar
  26. 10d.
    E. Nowak, J. Sucher and C. H. Woo, Phys. Rev. D16, 2874 (1977);Google Scholar
  27. 10e.
    H. Terezawa, Phys. Rev. D22, 184 (1980);Google Scholar
  28. 10f.
    H. Terezawa, Y. Chikashige and K. Akama, PHys. Rev. D15, 480 (1977);Google Scholar
  29. 10g.
    H. Harari, Phys. Letters 86B 83 (1979);Google Scholar
  30. 10h.
    M. A. Shupe, Tnys. Letters 86B, 87 (1979);Google Scholar
  31. 10i.
    G.’t Hooft, Cargése Lectures (1979);Google Scholar
  32. 10j.
    R. Casalbuoni and T R. Gatto, Geneva preprint UGVA-DPT 1980/02-235;Google Scholar
  33. 10k.
    R. Barbieri, L. Maiani and R. Petronzio, CERN preprint TH-2900 (1980);Google Scholar
  34. 10l.
    R. Chanda and P. Roy, CERN preprint (1980);Google Scholar
  35. 10m.
    F. Mansouri, Yale preprint (1980);Google Scholar
  36. 10n.
    H. Harari and M. Seiburg preprint, (1980);Google Scholar
  37. 10o.
    D. D. Wu, Harvard preprint (1981);Google Scholar
  38. 10p.
    M. Yasue, Phys. Lett. 91B, 85 (1980).Google Scholar
  39. 11.
    J. Pati, Invited talk, 1980-Neutrino Conf. held at Erice (June, 80), To appear in the Proceedings;Google Scholar
  40. 11a.
    J. Pati, A review to be published in the Proceedings of “Unified Field Theories and Beyond,” Workshop held at Johns Hopkins University (May, 1981).Google Scholar
  41. 11b.
    H. Harari, Review at SLAC Summer Workshop, SLAC preprint (1980).Google Scholar
  42. 12.
    S. Weinberg, Phys. Rev. D19, 1277 (1979);Google Scholar
  43. 12a.
    L. Susskind, Phys. Rev. D20, 2619 (1979); For other relevant references see review on “Technicolour” by E. Farhi and L. Susskind, CERN preprint Ref. TH29 75.Google Scholar
  44. 13.
    J. C. Pati and Abdus Salam, Phys. Rev. D10, 275 (1974);Google Scholar
  45. 13a.
    R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566 (1975);Google Scholar
  46. 13b.
    R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 2558 (1975);Google Scholar
  47. 13c.
    G. Senjanovic and R. N. Mohapatra, Phys. Rev. D12, 1502 (1975).Google Scholar
  48. 14.
    M. Gell-Mann, P. Ramond and R. Slansky, Rev. Mod. Phys. 50, 721 (1978);CrossRefGoogle Scholar
  49. 14a.
    T. Rizzo and G. Senjanovic (Phys. Rev. Lett. 46, 1315 (1981)) Suggest a scale for WR-mass lighter than 1 TeV.CrossRefGoogle Scholar
  50. 14b.
    A. DeRujula, CERN preprint (1980).Google Scholar
  51. 15.
    J. C. Pati, Abdus Salam and J. Strathdee, Trieste Preprint “Probings through proton-decay and n-fi oscillations,” IC/80/183; Nuclear Physics (to appear).Google Scholar
  52. 16.
    J. C. Pati and Abdus Salam, Phys. Lett. 58B, 333 (1975).Google Scholar
  53. 16a.
    J. C. Pati, “An introduction to unification” in Topics in Quantum Field Theory and Gauge Theories, Proc. Salamanca 1977, page 262; ed. by J. A. de Azcarraga, published by Springer-Verlag.Google Scholar
  54. 17.
    Such a difference may have to be traced to a preonic origin of quarks and leptons.Google Scholar
  55. 18.
    J. C Pati, Proc Scottish Univ. Summer School Lecture notes, held at St. Andrews (1976).Google Scholar
  56. 18a.
    V. Elias and S. Rajpoot, Phys. Lett. (1979). Note that a maximal extension of [SU(6)]4 would be SU(72), not SU(48).Google Scholar
  57. 19.
    One may group heavy leptons with (u,d)-quarks and/or choose to introduce auxiliary global symmetries beyond the local symmetry so as to make the proton stable. This possibility has been considered by a number of authors. See for example, M. Gell-Mann, P. Ramond and R. Slansky (Ref. 14); P. Langacker, G. Segre and H. Weldon, Phys. Lett. 73B, 87 (1978);Google Scholar
  58. 19a.
    N. Deshpande and P. Mannheim (preprint, 1979), But the simplest and the most natural consequence of the hypothesis of quark-lepton unification is that proton is unstable.Google Scholar
  59. 20.
    B. Deo, J. C. Pati, S. Rajpoot and Abdus Salam,“On Proton Decay” (unpublished), 1979. This work is reported briefly in J. C. Pati and A. Salam, Proc. Grand Unification Workshop, held at Durham, New Hampshire (April, 1980).Google Scholar
  60. 21.
    J.C. Pati, “Grand unification and proton-stability,” Proc. of Workshop held at Madison, Wisconsin (Dec. 1978).Google Scholar
  61. 22.
    R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).CrossRefGoogle Scholar
  62. 23.
    See however, remarks by L. Chang and N. P. Chang, CCNY-HEP-80/5 (1980).Google Scholar
  63. 24.
    S. Weinberg, Phys. Rev. D22, 1694, (1980).Google Scholar
  64. 25.
    A. J. Buras, J. Ellis, M. Gaillard and D. V. Nanopoulos, Nucl. Phys. B135, 66 (1978);Google Scholar
  65. 25a.
    T. J. Goldman and D. A. Ross, Cal. Tech. Preprint 68-759 (1980);Google Scholar
  66. 25b.
    J. Ellis, M. K. Gaillard, D. V. Nanopoulos and S. Rudaz, CERN-Annecy preprint, LAPP-TH-14, CERN TH-2833;Google Scholar
  67. 25c.
    W. Marciano and A. Sirlin, Phys. Rev. Lett. 1981. Other references may be found here.Google Scholar

Copyright information

© Birkhäuser Boston 1981

Authors and Affiliations

  • Jogesh C. Pati
    • 1
  1. 1.Center for Theoretical Physics Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations