Skip to main content

Stable Real Cohomology of Arithmetic Groups II

  • Chapter
Manifolds and Lie Groups

Part of the book series: Progress in Mathematics ((PM,volume 14))

Abstract

Given a discrete subgroup Γ of a connected real semisimple Lie group G with finite center there is a natural homomorphism

$$j_\Gamma ^q:I_G^q \to {H^q}\left( {\Gamma ;c} \right)\quad \left( {q = 0,1, \ldots } \right),$$
((1))

where I qG denotes the space of G-invariant harmonic q-forms on the symmetric space quotient X=G/K of G by a maximal compact subgroup K. If Γ is cocompact, this homomorphism is injective in all dimensions and the main objective of Matsushima in [19] is to give a range m(G), independent of Γ, in which j qΓ is also surjective. The main argument there is to show that if a certain quadratic form depending on q is positive non-degenerate, then any Γ-invariant harmonic q-form is automatically G-invariant. In [3], we proved similarly the existence of a range in which j qΓ is bijective when Γ is arithmetic, but not necessarily cocompact. There are three main steps to the proof: (i) The cohomology of Γ can be computed by using differential forms which satisfy a certain growth condition, “logarithmic growth,” at infinity; (ii) up to some range c(G), these forms are all square integrable; and (iii) use the fact, pointed out in [16] , that for q ≦ m(G), Matsushima’s arguments remain valid in the non-compact case for square integrable forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Borel, “Some finiteness properties of adele groups over number fields,” Publ. Math. I.H.E.S. 16, 5–30 (1963).

    MathSciNet  Google Scholar 

  2. A. Borel, “Cohomologie reelle stable de groupes S-arithmétiques,” C.B. Acad. Soi. Paris 274, 1700–1702 (1972).

    Google Scholar 

  3. A. Borel, “Stable real cohomology of arithmetic groups,” Annales Soi. E.N.S. Paris(4)7., 235–272 (1974)

    MathSciNet  MATH  Google Scholar 

  4. A. Borel, “Cohomology of arithmetic groups,” Proc. Int. Congress of Math. Vancouver, Vol. 1, 435–442 (1970).

    Google Scholar 

  5. A. Borel, “Cohomologie de sous-groupes discrets et représentations de groupes semi-simpies,” Astéristique 32–33, 73–111 (1976).

    MathSciNet  Google Scholar 

  6. A. Borel, “Stable and L2-cohomology of arithmetic groups,” Bull. A.M.S. (N.S.) 3, 1025–1027 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Borel and H. Garland, “Laplacian and discrete spectrum of an arithmetic group” (in preparation).

    Google Scholar 

  8. A. Borel and J-P. Serre, “Corners and arithmetic groups,” Comm. Math. Helv. 48, 436–491 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Borel and J-P. Serre, “Cohomologie d’immeubles et de groupes S-arithmétrques,” Topology 15, 211–232 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Borel and J. Tits, “Groupes réductifs,” Publ. Math. I.H.E.S. 27, 55–150 (1965).

    MathSciNet  Google Scholar 

  11. A. Borel and N. Wallach, “Continuous cohomology, discrete subgroups and representations of reductive groups,” Annals of Mathematics Studies 94; xvii + 387 p., Princeton University Press, 1980.

    MathSciNet  Google Scholar 

  12. N. Bourbaki, “Groupes et Algèbres de Lie,” Chap. IV, V, VI, Act. Sci. Ind. 1337, Hermann, Paris, 1968.

    MATH  Google Scholar 

  13. F. Bruhat and J. Tits, “Groupes réductifs sur un corps local l,” Publ. Math. I.H.E.S. 41, 1–251 (1972).

    Google Scholar 

  14. T. Enright, “Relative Lie algebra and unitary representations of complex Lie groups,” Duke M. J. 46, 513–525 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  15. F.T. Farrell and W.C. Hsiang, “On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds,” Proc. Symp. Pure Math. 37, Part 1 (1978), 403–415, A.M.S. Providence, RI.

    Google Scholar 

  16. H. Garland, “A finiteness theorem for K2 of a number field,” Annals of Math.(2), 94, 534–548 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Garland and W.C. Hsiang, “A square integrabi1ity criterion for the cohomology of an arithmetic group,” Proc. Nat. Acad. Sei. USA, 59, 354–360 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Godement, “Theorie des Faisceaux,” Act. Sci. Ind. 1252, Hermann, Paris, 1958.

    MATH  Google Scholar 

  19. Y. Matsushima, “On Betti numbers of compact, locally symmetric Riemannian manifolds,” Osaka Math. J. 14, 1–20 (1962).

    MathSciNet  MATH  Google Scholar 

  20. Y. Matsushima, “A formula for the Betti numbers of compact locally symmetric Riemannian manifolds,” Jour. Diff. Geom. 1, 99–109 (1967).

    MathSciNet  MATH  Google Scholar 

  21. Y. Matsushima and S. Murakami, “On vector bundle valued harmonic forms and automorphic forms on symmetric spaces,” Annals of Math.(2) 78, 365–416 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Matsushima and S. Murakami, “On certain cohomology groups attached to hermitian symmetric spaces,” Osaka J. Math. 2, 1–35, (1965).

    MathSciNet  MATH  Google Scholar 

  23. G. Prasad, “Strong approximation for semi-simple groups over function fields,” Annals of Math.(2) 105, 553–572 (1977).

    Article  MATH  Google Scholar 

  24. M.S. Raghunathan, “Cohomology of arithmetic subgroups of algebraic groups II ,” Annals of Math.(2) 87, 279–304 (1968).

    Article  MATH  Google Scholar 

  25. A. Weil, Adeles and algebraic groups, Notes by M. Demazure and T. Ono, Institute for Advanced Study, Princeton, NJ, 1961.

    Google Scholar 

  26. G. W. Whitehead, “Elements of homotopy theory,” Grad. Texts in Math. 61, Springer Verlag, New York, 1978.

    Book  MATH  Google Scholar 

  27. S. Zucker, “L2-cohomology of warped products and arithmetic groups,” (to appear).

    Google Scholar 

  28. S. Zuckermann, “Continuous cohomology and unitary representations of real reductive groups,” Annals of Math.(2) 107, 495–516 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borel, A. (1981). Stable Real Cohomology of Arithmetic Groups II. In: Hano, Ji., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds) Manifolds and Lie Groups. Progress in Mathematics, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5987-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5987-9_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5989-3

  • Online ISBN: 978-1-4612-5987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics