Skip to main content

On Compact Einstein Kähler Manifolds with Abundant Holomorphic Transformations

  • Chapter
Manifolds and Lie Groups

Part of the book series: Progress in Mathematics ((PM,volume 14))

  • 859 Accesses

Abstract

Let (M,J,g) be a compact connected Kähler manifold and let Ric(g) denote the Ricci tensor. A compact Kähler manifold (M,J,g) is said to be Einstein if Ric(g) = kg for some k ∈ R. If we denote by γ the Ricci form of (M,J,g) (γ(X,Y) = Ric(g)(X,JY)) and by ω the Kähler form, (M,J,g) is Einstein if and only if γ = kω (k ∈ R). Let H2 (M, ℝ) denote the 2nd cohomology group with the coefficients in R. It is known that the first Chern class c1 (M) of a compact Kähler manifold (M, J, g) is given by

$${c_1}\left( M \right) = \frac{1}{{2\pi }}\left[ \gamma \right] \in {H^2}\left( {M,R} \right)$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aubin, “Equations du type Monge-Ampère sur les varieties Kähleriennes compacts,” C.R. Acad. Sci. Paris 283 (1976), 119–121.

    MathSciNet  MATH  Google Scholar 

  2. A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.

    MATH  Google Scholar 

  3. A. Borel and J. De Siebenthal, “Les sous-groupes fermes des rang maximum des groupes de Lie clos,” Comment. Math. Helv. 23 (1949), 200–221.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bott, “Homogeneous vector bundles,” Ann. of Math. 66 (1975), 203–248.

    Article  MathSciNet  Google Scholar 

  5. N. Bourbaki, Groupes et Algebres de Lie, Chap. 4,5 et 6, Hermann, Paris, 1968.

    MATH  Google Scholar 

  6. N. Bourbaki, Groupes et Algebres de Lie, Chap. 7 et 8, Hermann, Paris, 1975.

    MATH  Google Scholar 

  7. E.B. Dynkin, “The maximal subgroups of the classical groups,” Amer. Math. Soc. Transi. (2), 6 (1957), 245–378.

    MathSciNet  MATH  Google Scholar 

  8. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer Verlag, Berlin, 1966.

    Book  MATH  Google Scholar 

  9. M. Ise, “Some properties of complex analytic vector bundles over compact complex homogeneous spaces,” Osaka Math. J. 12 (1960), 217–252.

    MathSciNet  MATH  Google Scholar 

  10. K. Ishikawa and Y. Sakane, “On complex projective bundles over a Kähler C-space,” Osaka Math. J. 16 (1979), 121–132.

    MathSciNet  MATH  Google Scholar 

  11. W. Kaup, “Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen,” Invent. Math. 3 (1967), 43–70.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Kimura, “On the hypersurfaces of hermitian symmetric spaces of compact type,” Osaka J. Math. 16 (1979), 79–119.

    Google Scholar 

  13. S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972.

    Book  MATH  Google Scholar 

  14. S. Kobayashi, “On compact Kähler manifolds with positive definite Ricci tensor,” Ann. of Math. 74 (1961), 570–574.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kobayashi and T. Nagano, “Riemannian manifolds with abundant isometries,” differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo (1972), 195–219.

    Google Scholar 

  16. S. Kobayashi and T. Ochiai, “Three-dimensional compact Kähler manifolds with positive holomorphic bisectional curvature,” J. Math. Soc. Japan 24 (1972), 465–480.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Kostant, “Lie algebra cohomology and the generalized Borel-Weil theorem,” Ann. of Math. 74 (1961), 329–387.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Mabuchi, “On the classification of essentially effective SL(n,C)-actions on algebraic n-folds,” Osaka J. Math. 16 (1979), 745–758.

    MathSciNet  MATH  Google Scholar 

  19. L.N. Mann, “Gaps in the dimensions of transformation group,” Illinois J. Math. 10 (1966), 532–546.

    MathSciNet  MATH  Google Scholar 

  20. Y. Matsushima, “Sur les espaces homogènes Kä’hlériennes d’un groupe de Lie reductif,” Nagoya Math. J. 11 (1957), 53–60.

    MathSciNet  MATH  Google Scholar 

  21. Y. Matsushima, “Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété Kâ’hlérienne,” Nagoya Math. J. 11 (1957), 145–150.

    MathSciNet  MATH  Google Scholar 

  22. Y. Matsushima, “Remarks on Kähler-Einstein manifolds,” Nagoya Math. J. 46 (1972), 161–173.

    MathSciNet  MATH  Google Scholar 

  23. J. Milnor, “Lectures on Morse theory,” Annals Math. Studies No. 51, Princeton Univ. Press, 1963.

    Google Scholar 

  24. S. Tanno, “The automorphism groups of almost hermitian manifolds,” Trans. Amer. Soo. 137 (1969), 269–275.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Uchida, “Smooth actions of special unitary groups on cohomology complex projective spaces,” Osaka J. Math. 12 (1975), 375–400.

    MathSciNet  MATH  Google Scholar 

  26. S.T. Yau, “On the curvature of compact Hermitian manifolds,” Invent. Math. 25 (1974), 213–239.

    Article  MathSciNet  MATH  Google Scholar 

  27. S.T. Yau, “On the Ricci cúrvature of a compact Kähler manifold and the complex Monge-Ampère equation I,” Comm. Pure Appl. Math. 31 (1978), 339–411.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakane, Y. (1981). On Compact Einstein Kähler Manifolds with Abundant Holomorphic Transformations. In: Hano, Ji., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds) Manifolds and Lie Groups. Progress in Mathematics, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5987-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5987-9_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5989-3

  • Online ISBN: 978-1-4612-5987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics