Skip to main content

Cell Surface Differentiation in the Embryonic Chick Retina

  • Chapter
Ocular Size and Shape Regulation During Development

Part of the book series: Ocular Size and Shape ((EYE))

Abstract

A major problem in the study of morphogenetic movements during organogenesis has been the analysis of the factors which allow different cells within a tissue to assume their final unique positions. Although many theories of morphogenetic movements assume that cell surface alterations are associated with changes in cell position, there have in fact been few studies that have addressed the problem within a single tissue. This problem is particularly pertinent to retina, since there is a requirement for strict organization in the layering of the cells and in their horizontal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T. F. 1951. Techniques for preservation of 3-dimensional structures on preparing specimens for electron microscope. Tr. NY Acad. Sci. 13; 130–134.

    Google Scholar 

  • Baldwin, K. M. 1979. Cardiac gap junction configuration after an uncoupling treatment as a function of time. J. Cell Biol. 82; 66–75.

    Article  PubMed  CAS  Google Scholar 

  • Balsamo, J., Lilien, J. 1974. Functional identification of three components which mediate tissue-type specific embryonic cell adhesion. Nature 251; 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Buskirk, D. R., Thiery, J. P., Rutishauser, U., Edelman, G. 1980. Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retinae. Nature 285; 488–489.

    Article  PubMed  CAS  Google Scholar 

  • CrisantiCombes, P., Privat, A., Pessac, Calotny, G. 1977. Differentiation of chick embryo neuroretina cells in monolayer cultures. An ultra-structural study. Cell Tiss. Res. 185; 159–173.

    Article  Google Scholar 

  • Coulombre, A. J. 1955. Correlations of structural and biochemical changes in the developing neural retina of the chick. Amer. J. Anat. 96; 153–190.

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa, H., Morioka, H., Watanabe, K., Nakamura, H. 1976. A decay of gap junctions in association with cell differentiation of neural retina in chick embryonic development. J. Cell Sci. 22; 585–596.

    PubMed  CAS  Google Scholar 

  • Goldberg, S. 1976. Progressive fixation of morphological polarity in the developing retina. Dev. Biol. 53; 126–127.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, S., Coulombre, A. 1972. Topographic development of the ganglion cell fiber layer in the chick retina. A whole mount study. J. Comp. Neurol 146; 507–518.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, D. I., Rock, K., Glaser, L. 1976. A gradient of adhesive specificity in developing avian retina. Proc Natl. Acad. Sci. USA 73; 410–414.

    Article  PubMed  CAS  Google Scholar 

  • Grunwald, G., Geller, R. L., Lilien, J. 1980. Enzymatic dissection of embryonic cell adhesive mechanisms. J. Cell Biol. 85; 766–776.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, R. E., Knapp, L. W., Moscona, A. A. 1976. Preparation of tissue-specific cell-aggregating factors from embryonic neural tissues. J. Exp. Zool 198; 417–422.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, R. E., Moscona, A. A. 1976. Isolation of retina-specific cell-aggregating factor from membranes of embryonic neural retina tissue. Proc. Natl. Acad. Sci. USA 73; 3594–3598.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, R. E., Moscona, A. A. 1979. Immunologie detection of retina cognin on the surface of embryonic cells. Exp. Cell Res. 119; 191–204.

    Article  PubMed  CAS  Google Scholar 

  • Hay, E. D. 1968. Organization and fine structure of epithelium and mesen-chyme in the developing chick embryo. In Epithelial-Mesenchyme Interactions. R. W. Fleischmajer, editor. Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Hayes, B. P. 1977. Intercellular gap junctions in the developing retina and pigment epithelium of the chick. Anat. Embryol. 151; 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W., Hinds, P. L. 1979. Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: an electron microscopic, serial section analysis. J. Comp. Neurol. 187; 495–512.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, A. J. 1974. An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Develop. Biol. 38; 30–40.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227; 680–686.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, W. J. 1977. Structural diversity of gap junctions. A review. Tissue and Cell 9; 373–394.

    Article  PubMed  CAS  Google Scholar 

  • Laskey, R. A., Mills, A. D. 1975. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. European J. of Biochem. 56; 335–341.

    Article  CAS  Google Scholar 

  • Lilien, J. E. 1968. Specific enhancement of cell aggregation in vitro. Develop. Biol. 17; 657–658.

    Article  PubMed  CAS  Google Scholar 

  • Marchase, R. B. 1977. Biochemical investigations of retinotectal specificity. J. Cell Biol. 75; 237–257.

    Article  PubMed  CAS  Google Scholar 

  • Marchase, R. Vosbeck, K., Roth, S. 1976. Intercellular adhesive specificity. Biochem. Biophys. Acta. 457; 385–415.

    PubMed  CAS  Google Scholar 

  • McClay, D. R., Moscona, A. A. 1974. Purification of the specific cell aggregating factor from embryonic neural retina cells. Exp. Cell Res. 87; 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Meiler, K. 1979. Scanning electron microscope studies on the development of the nervous system in vivo and in vitro. International Rev. Cytol. 56; 23–56.

    Article  Google Scholar 

  • Merrell, R., Gottlieb, D. I., Glaser, L. 1975. Embryonal cell surface recognition. Extraction of an active plasma membrane component. J. Biol. Chem. 250(14); 5655–5659.

    PubMed  CAS  Google Scholar 

  • Mollenhauer, H. H. 1964. Plastic embedding mixtures for electron microscopy. Stain Tech. 39; 112–121.

    Google Scholar 

  • Morest, D. Kent. 1970. The pattern of neurogenesis in the retina of the rat. Z. Anat. Entwickl.-Gesch 131; 45–67.

    Article  CAS  Google Scholar 

  • Moscona, A. A. 1952. Cell suspensions from organ rudiments of chick embryos. Exptl. Cell Res. 3; 535–539.

    Article  CAS  Google Scholar 

  • Moscona, A. A. 1962. Analysis of cell recombinations in experimental synthesis of tissues in vitro. J. Cell Comp. Physiol. 60(supple. 1); 65–80.

    Article  Google Scholar 

  • Moscona, A. A. 1965. Recombination of dissociated cells and the development of cell aggregates. In Cells and Tissues and Culture. E. N. Willmer, editor. Academic Press, Inc., New York. Ch. 14, pp. 489–529.

    Google Scholar 

  • Moscona, A. A., Moscona, H. 1952. The dissociation and reaggregation of cells from organ rudiments of the early chick embryo. J. Anat. 86; 287–301.

    PubMed  CAS  Google Scholar 

  • Moscona, A. A., Moscona, M. H. 1966. Aggregation of embryonic cells in a serum free medium and its inhibition at suboptimal temperatures. Exptl. Cell Res. 41; 697–702.

    Article  PubMed  CAS  Google Scholar 

  • Okada, T. S. 1977. A demonstration of lens forming cells in neural retina in clonal cell culture. Dev. Growth Differ. 19(1); 47–55.

    Article  Google Scholar 

  • Peracchia, C. 1977. Gap junctions: structural changes after uncoupling procedures. J. Cell Biol. 72; 628–641.

    Article  PubMed  CAS  Google Scholar 

  • Piddington, R., Moscona, A. A. 1965. Correspondence between glutamine synthetase activity and differentiation in the embryonic retina in situ and in culture. J. Cell Biol. 27; 252–257.

    Article  Google Scholar 

  • Rutishauser, U., Gall, W. E., Edelman, G. M. 1978. Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J. Cell Biol. 79; 382–393.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, J. B. 1970. Studies on aggregation of embryonic cells: initial cell adhesions and the formation of intercellular junctions. J. Morphol. 132; 245–263.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, J. B. 1973. Envelope of mouse mammary tumor virus studied by freeze-etching and freeze-fracture techniques. J. Virol 12; 616–624.

    PubMed  CAS  Google Scholar 

  • Sheffield, J. B. 1978. Membrane alterations during chick neural retina development. J. Cell Biol. 79; 38a.

    Google Scholar 

  • Sheffield, J. B. 1979. Contribution of carbon to the image in freeze-fracture replication. In Freeze Fracture: Methods, Artifacts and Interpretations. J. E. Rash and C. S. Hudson, editors. Raven Press, NY.

    Google Scholar 

  • Sheffield, J. B. 1980. Membrane alterations during chick neural retina development: a freeze-fracture study. Tissue and Cell 12; 355–366.

    Article  Google Scholar 

  • Sheffield, J. Fischman, D. A. 1970. Intercellular junctions in the developing neural retina of the chick embryo. Z. Zellforsch Mikrosk Anat. 104; 405–418.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, J. Pressman, D., Lynch, M. 1980. Cells isolated from the embryonic neural retina differ in behavior in vitro and membrane structure. Science in press.

    Google Scholar 

  • Sidman, R. L. 1961. Histogenesis of the mouse retina studied with thymidine-H3. In The Structure of the Eye, G. K. Smelser, editor Academic Press, NY, pp. 487–506.

    Google Scholar 

  • Simionescu, N., Simioniescu, M. 1976. Galloylglucoses of low molecular weight as mordant in electron microscopy. J. Cell Biol. 70; 608–621.

    Article  PubMed  CAS  Google Scholar 

  • Stefanelli, A. A., Zacchei, A. M., Carsvita, S., Cataldi, A., Teradi, L. A. 1967. New forming retinal synapses in vitro. Experientia 23; 199–200.

    Article  PubMed  CAS  Google Scholar 

  • Takeichi, M., Ozaki, H. S., Tokunaga, K., Okada, T. S. 1979. Experimental manipulation of cell surface to affect cellular recognition mechanism. Developmental Biol. 70; 195–205.

    Article  CAS  Google Scholar 

  • Townes, P. S., Holtfreter, J. 1955. Directed movements and selective adhesion of embryonic amphibians. J. Exp. Zool. 128; 53–120.

    Article  Google Scholar 

  • Umbreit, J., Roseman, S. 1975. A requirement for reversible binding between aggregating embryonic cells before stable adhesion. J. Biol. Chem. 250; 9360–9368.

    PubMed  CAS  Google Scholar 

  • Vogel, Z., Daniels, M. P., Nirenberg, M. 1976. Synapse and acetylcholine receptor synthesis by neurons dissociated from retina. Proc. Nat. Acad. Sci. USA 73; 2370–2374.

    Article  PubMed  CAS  Google Scholar 

  • Walther, Ohman, R., Roseman, S. 1973. A quantitative assay for intercellular adhesion. Proc. Nat. Acad. Sci. USA 70; 1569–1573.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, H. V. 1910. Development of sponges from dissociated tissue cells. Bull. Bur. Fisheries 30; 1–30.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Sheffield, J.B., Lynch, M. (1981). Cell Surface Differentiation in the Embryonic Chick Retina. In: Hilfer, S.R., Sheffield, J.B. (eds) Ocular Size and Shape Regulation During Development. Ocular Size and Shape. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5964-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5964-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5966-4

  • Online ISBN: 978-1-4612-5964-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics