Dynamic Properties from Utricular Afferents

  • Ruben Budelli
  • Omar Macadar


Otolithic organs have been classically considered as accelerometers with a practically flat gain-frequency curve (26). However, a closer look into the responses recorded from the otolithic afferent nerves reveals a more complex input-output relationship (9,10,22,23). Otolithic organs do not respond to changes in the acceleration vector in a linear way: they are sensitive to high frequency vibrations in a nonlinear fashion (21). Linear accelerations of the same amplitude but opposite sense elicit different responses from otolithic organs (9). Because of adaptation (23), otolithic organs can respond phasically to a sustained mechanical stimulus, and as a result their gain frequency curves have a positive slope. Furthermore, all the afferents innervating a given organ do not respond identically to the same stimulus (23). This complexity makes it difficult to consider the otolithic organs as simple accelerometers, and makes a characterization of the different afferents neeessary.


Kelly Dura Stim 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanks, R.H.I, and Precht, W.: Functional characterization of primary vestibular afferents in the frog. Exp. Brain Res. 25:369, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Budelli, R. and Macadar, O.: Stato-acoustic properties of utricular afferents. J. Neurophysiol. 42:1479, 1979.PubMedGoogle Scholar
  3. 3.
    Cazin, L. and Lannou, J.: Response du saccule a’ la stimulation vibratoire directe de la macule, chez la grenouille. C. R. Soc. Biol. (Paris) 169:1067, 1975.Google Scholar
  4. 4.
    Cazin, L. and Lannou, J.: Two populations of afferent fibers in the saccular nerve of the frog (Rana esculenta). Brain Res. 1 14:501, 1976.CrossRefGoogle Scholar
  5. 5.
    Chapman, C.J. and Sand, O.: Field studies of hearing in two species of flatfish: Pleuronects platessa(L) and Limanda limanda(L) (Family Pleunectidae). Comp. Biochem. Physiol. 47A:371, 1974.CrossRefGoogle Scholar
  6. 6.
    Colnaghi, G.L.: Saccular potentials and their relationship to hearing in the goldfish Carassius auratus).Comp. Biochem. Physiol. 50A:605, 1973Google Scholar
  7. 7.
    Davis, H.: Some principles of sensory receptor action. Physiol. Rev. 41:391, 1961.PubMedGoogle Scholar
  8. 8.
    de Vries, H.: The mechanics of the labyrinth otoliths. Acta Otolaryngol. 38:262, 1950.CrossRefGoogle Scholar
  9. 9.
    Fernandez, C. and Goldberg, J.: Physiology of peripherel neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long duration centrifugal force. J. Neurophysiol. 39:970, 1976.PubMedGoogle Scholar
  10. 10.
    Fernandez, C. and Goldberg, J.: Physiology of peripherel neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J. Neurophysiol. 39:996, 1976.PubMedGoogle Scholar
  11. 11.
    Goldberg, J. and Brown, P.B.: Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32:613, 1969.PubMedGoogle Scholar
  12. 12.
    Goldberg, J. and Fernandez, C.: Vestibular mechanism. Ann. Rev. Physiol. 37:129, 1975.CrossRefGoogle Scholar
  13. 13.
    Kelly, J.C. and Nelson, D.R.: Hearing thresholds of the horn shark (Herodontus francisci). J. Acoust. Soc. Am. 58:905, 1975.PubMedCrossRefGoogle Scholar
  14. 14.
    Kiang, N.Y.: Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, Mass., M.I.T. Press, 1965.Google Scholar
  15. 15.
    Lannou, J. and Cazin, L.: Response to tilting of the fibers of the frog’s saccular nerve. Pfluegers Arch. 366:143, 1976.CrossRefGoogle Scholar
  16. 16.
    Lippold, O.C.J., Nicholls, J.G., and Redfearn, J.W.T.: Electrical and mechanical factors in the adaptation of a mammalian muscle spindle. J. Physiol. (Lond.) 153:209, 1960.Google Scholar
  17. 17.
    Loe, P.R., Tomko, D.L., and Werner, G.: The neural signal of angular head position in primary afferent vestibular nerve axons. J. Physiol. (Lond.) 230:29, 1973.Google Scholar
  18. 18.
    Loewenstein, W.R. and Mendelsohn, M.: Components of receptor adaptation in a pacinian corpuscle. J. Physiol. (Lond.) 177:377, 1965.PubMedGoogle Scholar
  19. 19.
    Lowenstein, O.: The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth in the thornback ray (Raja clavata). J. Physiol. (Lond.) 127:104, 1955.PubMedGoogle Scholar
  20. 20.
    Lowenstein, O. and Roberts, T.D.M.: The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. 1 10:392, 1949.Google Scholar
  21. 21.
    Lowenstein, O. and Roberts, T.D.M.: The localization and analysis of the response to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. (Lond.) 114:471, 1951.PubMedGoogle Scholar
  22. 22.
    Macadar, O., Wolfe, G.E., Budelli, R., and Segundo, J.P.: Multivalued stimulus-response relation in isolated elasmobranch utricles. Biol. Cybern, (in preparation).Google Scholar
  23. 23.
    Macadar, O., Wolfe, G.E., O’Leary, D.P., and Segundo, J.P.: Response of the elasmobranch utricle to maintained spatial orientation, transitions, and jitter. Exp. Brain Res. 22:1, 1975.PubMedCrossRefGoogle Scholar
  24. 24.
    Mardia, K.V.: Statistics of Directional Data. New York, Academic Press, 1972.Google Scholar
  25. 25.
    Nakajima, S. and Onodera, K.: Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J. Physiol. (Lond.) 200:161, 1969.PubMedGoogle Scholar
  26. 26.
    Young, L.R.: Role of the vestibular system in posture and movement. In Mountcastle, V.B. (ed.): Medical Physiology. St. Louis, Mosby, 1974, pp. 704–721.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Ruben Budelli
  • Omar Macadar

There are no affiliations available

Personalised recommendations