Dynamic Properties from Utricular Afferents

  • Ruben Budelli
  • Omar Macadar


Otolithic organs have been classically considered as accelerometers with a practically flat gain-frequency curve (26). However, a closer look into the responses recorded from the otolithic afferent nerves reveals a more complex input-output relationship (9,10,22,23). Otolithic organs do not respond to changes in the acceleration vector in a linear way: they are sensitive to high frequency vibrations in a nonlinear fashion (21). Linear accelerations of the same amplitude but opposite sense elicit different responses from otolithic organs (9). Because of adaptation (23), otolithic organs can respond phasically to a sustained mechanical stimulus, and as a result their gain frequency curves have a positive slope. Furthermore, all the afferents innervating a given organ do not respond identically to the same stimulus (23). This complexity makes it difficult to consider the otolithic organs as simple accelerometers, and makes a characterization of the different afferents neeessary.


Hair Cell Confidence Region Tuning Curve Acceleration Vector Vestibular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanks, R.H.I, and Precht, W.: Functional characterization of primary vestibular afferents in the frog. Exp. Brain Res. 25:369, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Budelli, R. and Macadar, O.: Stato-acoustic properties of utricular afferents. J. Neurophysiol. 42:1479, 1979.PubMedGoogle Scholar
  3. 3.
    Cazin, L. and Lannou, J.: Response du saccule a’ la stimulation vibratoire directe de la macule, chez la grenouille. C. R. Soc. Biol. (Paris) 169:1067, 1975.Google Scholar
  4. 4.
    Cazin, L. and Lannou, J.: Two populations of afferent fibers in the saccular nerve of the frog (Rana esculenta). Brain Res. 1 14:501, 1976.CrossRefGoogle Scholar
  5. 5.
    Chapman, C.J. and Sand, O.: Field studies of hearing in two species of flatfish: Pleuronects platessa(L) and Limanda limanda(L) (Family Pleunectidae). Comp. Biochem. Physiol. 47A:371, 1974.CrossRefGoogle Scholar
  6. 6.
    Colnaghi, G.L.: Saccular potentials and their relationship to hearing in the goldfish Carassius auratus).Comp. Biochem. Physiol. 50A:605, 1973Google Scholar
  7. 7.
    Davis, H.: Some principles of sensory receptor action. Physiol. Rev. 41:391, 1961.PubMedGoogle Scholar
  8. 8.
    de Vries, H.: The mechanics of the labyrinth otoliths. Acta Otolaryngol. 38:262, 1950.CrossRefGoogle Scholar
  9. 9.
    Fernandez, C. and Goldberg, J.: Physiology of peripherel neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long duration centrifugal force. J. Neurophysiol. 39:970, 1976.PubMedGoogle Scholar
  10. 10.
    Fernandez, C. and Goldberg, J.: Physiology of peripherel neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J. Neurophysiol. 39:996, 1976.PubMedGoogle Scholar
  11. 11.
    Goldberg, J. and Brown, P.B.: Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32:613, 1969.PubMedGoogle Scholar
  12. 12.
    Goldberg, J. and Fernandez, C.: Vestibular mechanism. Ann. Rev. Physiol. 37:129, 1975.CrossRefGoogle Scholar
  13. 13.
    Kelly, J.C. and Nelson, D.R.: Hearing thresholds of the horn shark (Herodontus francisci). J. Acoust. Soc. Am. 58:905, 1975.PubMedCrossRefGoogle Scholar
  14. 14.
    Kiang, N.Y.: Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, Mass., M.I.T. Press, 1965.Google Scholar
  15. 15.
    Lannou, J. and Cazin, L.: Response to tilting of the fibers of the frog’s saccular nerve. Pfluegers Arch. 366:143, 1976.CrossRefGoogle Scholar
  16. 16.
    Lippold, O.C.J., Nicholls, J.G., and Redfearn, J.W.T.: Electrical and mechanical factors in the adaptation of a mammalian muscle spindle. J. Physiol. (Lond.) 153:209, 1960.Google Scholar
  17. 17.
    Loe, P.R., Tomko, D.L., and Werner, G.: The neural signal of angular head position in primary afferent vestibular nerve axons. J. Physiol. (Lond.) 230:29, 1973.Google Scholar
  18. 18.
    Loewenstein, W.R. and Mendelsohn, M.: Components of receptor adaptation in a pacinian corpuscle. J. Physiol. (Lond.) 177:377, 1965.PubMedGoogle Scholar
  19. 19.
    Lowenstein, O.: The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth in the thornback ray (Raja clavata). J. Physiol. (Lond.) 127:104, 1955.PubMedGoogle Scholar
  20. 20.
    Lowenstein, O. and Roberts, T.D.M.: The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. 1 10:392, 1949.Google Scholar
  21. 21.
    Lowenstein, O. and Roberts, T.D.M.: The localization and analysis of the response to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. (Lond.) 114:471, 1951.PubMedGoogle Scholar
  22. 22.
    Macadar, O., Wolfe, G.E., Budelli, R., and Segundo, J.P.: Multivalued stimulus-response relation in isolated elasmobranch utricles. Biol. Cybern, (in preparation).Google Scholar
  23. 23.
    Macadar, O., Wolfe, G.E., O’Leary, D.P., and Segundo, J.P.: Response of the elasmobranch utricle to maintained spatial orientation, transitions, and jitter. Exp. Brain Res. 22:1, 1975.PubMedCrossRefGoogle Scholar
  24. 24.
    Mardia, K.V.: Statistics of Directional Data. New York, Academic Press, 1972.Google Scholar
  25. 25.
    Nakajima, S. and Onodera, K.: Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J. Physiol. (Lond.) 200:161, 1969.PubMedGoogle Scholar
  26. 26.
    Young, L.R.: Role of the vestibular system in posture and movement. In Mountcastle, V.B. (ed.): Medical Physiology. St. Louis, Mosby, 1974, pp. 704–721.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Ruben Budelli
  • Omar Macadar

There are no affiliations available

Personalised recommendations