Skip to main content

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 1))

Abstract

In his classic paper on “The thermodynamic properties of isotopic substances,” Harold Urey (1947) suggested that the small differences in chemical properties of the stable isotopes of light elements could be used for geological thermometry. In particular, he noted that the extent to which 18O was preferentially concentrated in calcium carbonate, relative to water from which it is precipitated, would be temperature dependent, and might therefore be used to determine past oceanic temperatures. Urey’s expectation was soon realized, and the method of isotopic thermometry has subsequently been extended to almost all areas of earth science. This paper is restricted to a discussion of the thermometric aspects of isotopic fractionation and makes no attempt to review the whole field of stable isotope geochemistry, in which the tracer aspects of isotopic abundances also play a large role. Most of the discussion deals with fractionation of oxygen isotopes since this element has been exploited for thermometry to a far greater extent than sulfur, carbon, and hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addy, S. K., and G. D. Garlick, 1974, Oxygen isotope fractionation between rutile and water, Contrib. Mineral. Petrol. 45, 119–121.

    Article  Google Scholar 

  • Anderson, A. T., Jr., 1967, The dimensions of oxygen isotopic equilibrium attainment during prograde metamorphism, J. Geol., 75, 323–332.

    Article  Google Scholar 

  • Anderson, A. T., Jr., R. N. Clayton, and T. K. Mayeda, 1971, Oxygen isotope thermometry of mafic igneous rocks, J. Geol., 79, 715–729.

    Article  Google Scholar 

  • Bartell, L. S., and R. R. Roskos, 1966, Isotope effects on molar volume and surface tension: simple theoretical model and experimental data for hydrocarbons, J. Chem. Phys., 44, 457–463.

    Article  Google Scholar 

  • Batchelder, J., 1977, Light stable isotope and fluid inclusion study of the porphyry copper deposit at Copper Canyon, Nevada, Econ. Geol., 72, 60–70.

    Article  Google Scholar 

  • Becker, R. H., and R. N. Clayton, 1976, Oxygen isotope study of a Precambrian banded iron formation, Hammersley Range, Western Australia, Geochim. Cos-mochim. Acta, 40, 1153–1165.

    Article  Google Scholar 

  • Bertenrath, R., H. Friedrichsen, and E. Hellner, 1973, Die Fraktionierung der Sauerstoffisotope O18/O16 in System Eisenoxid-Wasser, Fortschr. Mineral. 50, 32–33.

    Google Scholar 

  • Blattner, P., 1972, Oxygen isotopic composition of minerals from Lepontine gneisses, Valle Bodengo (Prov. di Sondrio, Italia), Schweiz. Mineralog. Petrog. Mitt., 52, 33–37.

    Google Scholar 

  • Blattner, P., 1975, Oxygen isotopic composition of fissure-grown quartz, adularia and calcite from Broadlands geothermal field, New Zealand, Am. J. Sci., 275, 785–800.

    Google Scholar 

  • Bottinga, Y., 1969, Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-CO2-graphite-methane-hydrogen and water vapor, Geochim. Cosmochim. Acta, 33, 49–64.

    Article  Google Scholar 

  • Bottinga, Y., and M. Javoy, 1973, Comments on oxygen isotopic geothermometry, Earth Planet. Sci. Lett., 20, 250–265.

    Article  Google Scholar 

  • Bottinga, Y., and M. Javoy, 1975, Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks, Rev. Geophys. Space Phys., 13, 401–418.

    Article  Google Scholar 

  • Clayton, R. N., 1959, Oxygen isotope fractionation in the system: calcium carbonate-water, J. Chem. Phys., 30, 1246–1250.

    Article  Google Scholar 

  • Clayton, R. N., 1961, Oxygen isotope fractionation between calcium carbonate and water, J. Chem. Phys., 34, 724–726.

    Article  Google Scholar 

  • Clayton, R. N., and S. Epstein, 1961, The use of oxygen isotopes in high-temperature geologic thermometry, J. Geol., 69, 447–452.

    Article  Google Scholar 

  • Clayton, R. N., L. J. P. Muffler, and D. E. White, 1968, Oxygen isotope study of calcite and silicates of the River Ranch No. 1 Well, Salton Sea geothermal field, California, Am. J. Sci., 266, 968–979.

    Article  Google Scholar 

  • Clayton, R. N., J. M. Hurd, and T. K. Mayeda, 1972a, Oxygen isotopic compositions and oxygen concentrations of Apollo 14 and Apollo 15 rocks and soils, Proc. Lunar Sci. Conf., 3, 1455–1463.

    Google Scholar 

  • Clayton, R. N., J. R. O’Neil, and T. K. Mayeda, 1972b, Oxygen isotope exchange between quartz and water, J. Geophys. Res., 77, 3057–3067.

    Article  Google Scholar 

  • Clayton, R. N., J. R. Goldsmith, K. J. Karel, T. K. Mayeda, and R. C. Newton, 1975, Limits on the effect of pressure on isotopic fractionation, Geochim. Cosmochim. Acta, 39, 1197–1201.

    Article  Google Scholar 

  • Clayton, R. N., and A. Steiner, 1975, Oxygen isotope studies of the geothermal system at Wairakei, New Zealand, Geochim. Cosmochim. Acta, 39, 1179–1186.

    Article  Google Scholar 

  • Clayton, R. N., N. Onuma, and T. K. Mayeda, 1976, A classification of meteorites based on oxygen isotopes, Earth Planet. Sci. Lett., 30, 10–18.

    Article  Google Scholar 

  • Craig, H., 1963, The isotopic geochemistry of water and carbon in geothermal areas, in Nuclear Geology in Geothermal Areas, edited by E. Tongiorgi, pp. 17–53, Consiglio Nazionale delle Ricerche, Pisa.

    Google Scholar 

  • Czamanske, G. K., and R. O. Rye, 1974, Experimentally determined sulfur isotope fractionations between sphalerite and galena in the temperature range 600 to 275°C, Econ. Geol., 69, 17–25.

    Article  Google Scholar 

  • Deines, P., 1977, On the oxygen isotope distribution among triplets in igneous and metamorphic rocks, Geochim. Cosmochim. Acta 41, 1709–1730.

    Article  Google Scholar 

  • Devereux, I., 1968, Oxygen isotope ratios of minerals from the regionally metamorphosed schists of Otago, New Zealand, N.Z. J. Sci., 11, 526–548.

    Google Scholar 

  • Elcombe, M. M., and J. R. Hulston, 1975, Calculations of sulphur isotope fractionation between sphalerite and galena using lattice dynamics, Earth Planet. Sci. Lett., 28, 447–452.

    Article  Google Scholar 

  • Emiliani, C., 1970, Pleistocene paleotemperatures, Science, 168, 822–825.

    Article  Google Scholar 

  • Emiliani, C., and N. J. Shackleton, 1974, The Brunhes epoch: Isotopic paleotemperatures and geochronology, Science, 183, 511–514.

    Article  Google Scholar 

  • Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey, 1951, Carbonate-water isotopic temperature scale, Bull. Geol. Soc. Am., 62, 417–426.

    Article  Google Scholar 

  • Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey, 1953, Revised carbonate-water isotopic temperature scale, Bull. Geol. Soc. Am., 64, 1315–1326.

    Article  Google Scholar 

  • Eslinger, E. V., S. M. Savin, and H.-W. Yeh, 1979, Oxygen isotope geothermometry of diagenetically altered shales, Soc. Econ. Paleont. Mineral. Spec. Pub. No. 26, 113–124.

    Google Scholar 

  • Frey, M., J. C. Hunziker, J. R. O’Neil, and H. W. Schwander, 1976, Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data, Contrib. Mineral. Petrol., 55, 147–179.

    Article  Google Scholar 

  • Friedman, I., and J. R. O’Neil, 1977, Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, edited by M. Fleischer, U.S. Geological Survey Professional Paper 440-KK.

    Google Scholar 

  • Garlick, G. D., and S. Epstein, 1966, The isotopic composition of oxygen and carbon in hydrothermal minerals at Butte, Montana, Econ. Geol., 65, 1325–1335.

    Google Scholar 

  • Garlick, G. D., and S. Epstein, 1967, Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks, Geochim. Cosmochim. Acta, 31, 181–214.

    Article  Google Scholar 

  • Giletti, B., M. P. Semet, and R. A. Yund, 1978, Studies in diffusion: III. Oxygen in feldspars: an ion microprobe determination, Geochim. Cosmochim. Acta, 43, 45–57.

    Article  Google Scholar 

  • Gregory, R. T., and H. P. Taylor, Jr., 1980, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for δ18O-buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges (preprint).

    Google Scholar 

  • Grootenboer, J., and H. P. Schwarcz, 1969, Experimentally determined sulfur isotope fractionations between sulfide minerals, Earth Planet. Sci. Lett., 7, 162–166.

    Article  Google Scholar 

  • Hoernes, S., and H. Friedrichsen, 1974, Oxygen isotope studies on metamorphic rocks of the western Hohe Tauern area (Austria), Schweiz. Mineral. Petrol. Mitt., 54, 769–788.

    Google Scholar 

  • Hoernes, S., and H. Friedrichsen, 1978, Oxygen and hydrogen isotope study of the polymetamorphic area of the northern Ötztal-Stubai Alps (Tyrol), Contrib. Mineral. Petrol., 67, 305–315.

    Article  Google Scholar 

  • James, H. L., and R. N. Clayton, 1962, Oxygen isotope fractionation in metamorphosed iron-formations of the Lake Superior Region and in other iron-rich rocks, in Petrologic Studies: A Volume to Honor A. F. Buddington, pp. 217–239, Geological Society of America, Washington, D.C.

    Google Scholar 

  • Javoy, M., and C. J. Allègre, 1967, Etude de la composition de quelques éclogites: Conséquences pétrologiques et géophysiques, Bull. Soc. Geol. France, 9, 800–808.

    Google Scholar 

  • Kajiwara, Y., 1971, Sulfur isotope study of the Kuroko-ores of the Shakanai No. 1 deposits, Akita Prefecture, Japan, Geochem. J., 4, 157–181.

    Article  Google Scholar 

  • Kajiwara, Y., and H. R. Krouse, 1971, Sulfur isotope partitioning in metallic sulfide systems, Can. J. Earth Sci., 8, 1397–1408.

    Article  Google Scholar 

  • Kawabe, I., 1978, Calculation of oxygen isotopic fractionation in quartz-water system with special reference to the low temperature fractionation, Geochim. Cosmochim. Acta, 42, 613–621.

    Article  Google Scholar 

  • Kerrich, R., R. D. Beckinsale, and J. J. Durham, 1977, The transition between deformation regimes dominated by intercrystalline diffusion and intercrystalline creep evaluated by oxygen isotope thermometry, Tectonophysics, 38, 241–257.

    Article  Google Scholar 

  • Kiyosu, Y., 1973, Sulfur isotope fractionation among sphalerite, galena and sulfide ions, Geochem. J., 7, 191–199.

    Article  Google Scholar 

  • Knauth, L. P., and S. Epstein, 1976, Hydrogen and oxygen isotope ratios in nodular and bedded cherts, Geochim. Cosmochim. Acta, 40, 1095–1108.

    Article  Google Scholar 

  • Lowenstam, H. A., and S. Epstein, 1954, Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method, J. Geol., 62, 207–248.

    Article  Google Scholar 

  • Lusk, J., F. A. Campbell, and H. R. Krouse, 1975, Application of sphalerite geobarometry and sulfur isotope geothermometry to ores of the Quemont Mine, Noranda, Quebec, Econ. Geol., 70, 1070–1083.

    Google Scholar 

  • Matsuhisa, Y., J. R. Goldsmith, and R. N. Clayton, 1978, Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar, Geochim. Cosmochim. Acta, 42, 173–182.

    Article  Google Scholar 

  • Matsuhisa, Y., J. R. Goldsmith, and R. N. Clayton, 1979, Oxygen isotope fractionation in the system quartz-albite-anorthite-water. Geochim. Cosmochim. Acta, 43, 1131–1140.

    Article  Google Scholar 

  • Matthews, A., and A. Katz, 1977, Oxygen isotope fractionation during the dolomitiza-tion of calcium carbonate, Geochim. Cosmochim. Acta, 41, 1431–1438.

    Article  Google Scholar 

  • Matthews, A., and R. D. Beckinsale, 1979, Oxygen isotope equilibration systematics between quartz and water, Am. Mineral., 64, 232–240.

    Google Scholar 

  • Matthews, A., J. R. Goldsmith, and R. N. Clayton, 1980, 18O/16O and 17O/16O fractionation studies on Ca-Mg silicate minerals (Abstract), EOS, 61, 403.

    Google Scholar 

  • Muehlenbachs, K., and R. N. Clayton, 1972, Oxygen isotope geochemistry of submarine greenstones, Can. J. Earth Sci., 9, 471–478.

    Article  Google Scholar 

  • Muehlenbachs, K., and R. N. Clayton, 1976, Oxygen isotopic composition of the oceanic crust and its bearing on seawater, J. Geophys. Res., 81, 4365–4369.

    Article  Google Scholar 

  • Northrop, D. A., and R. N. Clayton, 1966, Oxygen isotope fractionation in systems containing dolomite, J. Geol., 74, 174–196.

    Article  Google Scholar 

  • O’Neil, J. R., and R. N. Clayton, 1964, Oxygen isotope thermometry, in Isotopic and Cosmic Chemistry, edited by H. Craig, S. L. Miller, and G. J. Wasserburg, pp. 157–168, North-Holland Publishing, Amsterdam.

    Google Scholar 

  • O’Neil, J. R., and H. P. Taylor, Jr., 1967, The oxygen isotope and cation exchange chemistry of feldspars, Am. Mineral., 52, 1414–1437.

    Google Scholar 

  • O’Neil, J. R., R. N. Clayton, and T. K. Mayeda, 1969, Oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys., 51, 5547–5558.

    Article  Google Scholar 

  • O’Neil, J. R., and H. P. Taylor, Jr., 1969, Oxygen isotope equilibrium between muscovite and water, J. Geophys. Res., 74, 6012–6022.

    Article  Google Scholar 

  • O’Neil, J. R., M. L. Silberman, B. P. Fabbi, and C. W. Chesterman, 1973, Stable isotope and chemical relations during mineralization in the Bodie mining district, Mono County, California, Econ. Geol., 68, 765–784.

    Article  Google Scholar 

  • O’Neil, J. R., and M. L. Silberman, 1974, Stable isotope relations in epithermal Au-Ag deposits, Econ. Geol., 69, 902–909.

    Article  Google Scholar 

  • O’Neil, J. R., and E. D. Ghent, 1975, Stable isotope study of coexisting metamorphic minerals from the Esplanade Range, British Columbia, Bull. Geol. Soc. Am., 86, 1708–1712.

    Article  Google Scholar 

  • O’Neil, J. R., and Y. K. Kharaka, 1976, Hydrogen and oxygen isotope exchange reactions between clay minerals and water, Geochim. Cosmochim. Acta, 40, 241–246.

    Article  Google Scholar 

  • O’Neil, J. R., and G. B. Bailey, 1979, Stable isotope investigation of gold-bearing jasperoid in the central Drum Mountains, Utah, Econ. Geol., 74, 852–859.

    Google Scholar 

  • Onuma, N., R. N. Clayton, and T. K. Mayeda, 1970, Apollo 11 rocks: Oxygen isotope fractionation between minerals, and an estimate of the temperature of formation, Proc. Apollo 11 Lunar Sci. Conf., 1429–1434.

    Google Scholar 

  • Onuma, N., R. N. Clayton, and T. K. Mayeda, 1972, Oxygen isotope temperature of “equilibrated” ordinary chondrites, Geochim. Cosmochim. Acta, 36, 157–168.

    Article  Google Scholar 

  • Perry, E. C., Jr., and B. Bonnichsen, 1966, Quartz and magnetite: Oxygen-18-oxygen-16 fractionation in metamorphosed Biwabik iron formation, Science, 153, 528–529.

    Article  Google Scholar 

  • Perry, E. C., Jr., S. N. Ahmad, and T. M. Swulius, 1978, The oxygen isotope composition of 3,800 M.Y. old metamorphosed chert and iron formation from Isukasia, West Greenland, J. Geol., 86, 223–239.

    Google Scholar 

  • Ripley, E. M., and H. Ohmoto, 1977, Mineralogic, sulfur isotope and fluid inclusion studies of the stratabound copper deposits at the Raul Mine, Peru, Econ. Geol., 72, 1017–1041.

    Article  Google Scholar 

  • Rubinson, M., and R. N. Clayton, 1969, Carbon-13 fractionation between aragonite and calcite, Geochim. Cosmochim. Acta, 33, 997–1002.

    Article  Google Scholar 

  • Rye, R. O., 1974, A comparison of sphalerite-galena sulfur isotope temperatures with filling temperatures of fluid inclusions, Econ. Geol., 69, 26–32.

    Article  Google Scholar 

  • Savin, S., 1977, The history of the earth’s surface temperature during the past 100 million years, Ann. Rev. Earth Planet. Sci., 5, 319–355.

    Article  Google Scholar 

  • Sawkins, F. J., J. R. O’Neil, and J. M. Thompson, 1979, Fluid inclusion and geochemical studies of vein gold deposits, Baguio District, Philippines, Econ. Geol., 74, 1420–1434.

    Article  Google Scholar 

  • Schwarcz, H. P., R. N. Clayton, and T. K. Mayeda, 1970, Oxygen isotopic studies of calcareous and pelitic metamorphic rocks, New England, Bull. Geol. Soc. Am., 81, 2299–2316.

    Article  Google Scholar 

  • Sheppard, S. M. F., and H. P. Schwarcz, 1970, Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite, Contrib. Mineral. Petrol., 26, 161–198.

    Article  Google Scholar 

  • Shieh, Y. N., and H. P. Taylor, Jr., 1969a, Oxygen and carbon isotope studies of contact metamorphism of carbonate rocks, J. Petrol., 10, 307–331.

    Google Scholar 

  • Shieh, Y. N., and H. P. Taylor, Jr., 1969b, Oxygen and hydrogen isotope studies of contact metamorphism in the Santa Rosa range, Nevada, and other areas, Contrib. Mineral. Petrol., 20, 306–356.

    Article  Google Scholar 

  • Shiro, Y., and H. Sakai, 1972, Calculation of the reduced partition function ratios of α-, β-quartz and calcite, Bull. Chem. Soc. Japan, 45, 2355–2359.

    Article  Google Scholar 

  • Smith, J. W., S. Doolan, and E. F. McFarlane, 1977, A sulfur isotope geothermometer for the trisulfide system galena-sphalerite-pyrite, Chem. Geol., 19, 83–90.

    Article  Google Scholar 

  • Tarutani, T., R. N. Clayton, and T. K. Mayeda, 1969, The effect of polymorphism and magnesium substitution on the oxygen isotope fractionation between calcium carbonate and water, Geochim. Cosmochim. Acta, 33, 987–996.

    Article  Google Scholar 

  • Taylor, B. E., and J. R. O’Neil, 1977, Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks. Osgood Mountains, Nevada, Contrib. Mineral. Petrol., 63, 1–49.

    Article  Google Scholar 

  • Taylor, H. P., Jr., and S. Epstein, 1962, Relationship between Ol8/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Part 2. Application to petrologic problems, Bull. Geol. Soc. Am., 73, 675–694.

    Article  Google Scholar 

  • Taylor, H. P., Jr., A. L. Albee, and S. Epstein, 1963, O18/O16 ratios of coexisting minerals in three assemblages of kyanite-zone pelitic schists, J. Geol., 71, 513–522.

    Article  Google Scholar 

  • Taylor, H. P., Jr., 1968, The oxygen isotope geochemistry of igneous rocks, Contrib. Mineral. Petrol., 19, 1–71.

    Article  Google Scholar 

  • Taylor, H. P., Jr., and R. Coleman, 1968, O-18/O-16 ratios of coexisting minerals in glaucophane-bearing metamorphic rocks, Bull. Geol. Soc. Am., 79, 1727–1755.

    Article  Google Scholar 

  • Taylor, H. P., Jr., and S. Epstein, 1970, 18O/16O ratios of Apollo 11 lunar rocks and minerals, Proc. Apollo 11 Sci. Conf., 1613–1626.

    Google Scholar 

  • Taylor, H. P., Jr., and R. W. Forrester, 1971, Low O18 igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, Western Scotland, J. Petrol., 12, 465–497.

    Google Scholar 

  • Taylor, H. P., Jr., 1974, The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 69, 843–883.

    Article  Google Scholar 

  • Taylor, H. P., Jr., 1977, Water/rock interactions and the origin of H2O in granitic batholiths, J. Geol. Soc. London, 133, 509–558.

    Article  Google Scholar 

  • Taylor, H. P., Jr., and R. W. Forrester, 1979, An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: A description of a 55-MY old fossil hydrothermal system, J. Petrol., 20, 355–419.

    Google Scholar 

  • Urey, H. C., 1947, The thermodynamics of isotopic substances, J. Chem. Soc. London, 562–581.

    Google Scholar 

  • Urey, H. C., H. A. Lowenstam, S. Epstein, and C. R. McKinney, 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark and the Southern United States, Bull. Geol. Soc. Am., 62, 399–416.

    Article  Google Scholar 

  • Vogel, D. E., and G. D. Garlick, 1970, Oxygen isotope ratios in metamorphic eclogites, Contrib. Mineral. Petrol., 28, 183–191.

    Article  Google Scholar 

  • Wilson, A. F., D. C. Green, and L. R. Davidson, 1970, The use of oxygen isotope geothermometry on the granulites and related intrusives, Musgrave ranges, Central Australia, Contrib. Mineral. Petrol., 27, 166–178.

    Article  Google Scholar 

  • Yamamoto, M., 1974, Distribution of sulfur isotopes in the Iwami Kuroko deposits. Geochem. J., 8, 27–35.

    Article  Google Scholar 

  • Yeh, H.-W., and S. Savin, 1977, The extent of oxygen isotope exchange between clay minerals and sea water, Geochim. Cosmochim. Acta, 40, 743–748.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc

About this chapter

Cite this chapter

Clayton, R.N. (1981). Isotopic Thermometry. In: Newton, R.C., Navrotsky, A., Wood, B.J. (eds) Thermodynamics of Minerals and Melts. Advances in Physical Geochemistry, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5871-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5871-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5873-5

  • Online ISBN: 978-1-4612-5871-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics