Skip to main content

Asymptotic Theory of the Earth’s Normal Modes

  • Chapter
  • 642 Accesses

Abstract

We have seen that the complete seismic field induced in a radially heterogeneous sphere can be expressed as an infinite sum of standing waves, namely the normal modes. However, we know from seismogram analysis that most of the recorded earth motion can be explained in terms of propagating waves. There must exist a link, therefore, between these two seemingly different aspects of wave motion.

After having spent years trying to be accurate, we must spend as many more in discovering when and how to be inaccurate.

(Ambrose Bierce)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Alsop E (1964) Spheroidal free periods of the earth observed at eight stations around the world. Bull. Seism. Soc. Am 54: 755–776.

    Google Scholar 

  • Alterman Z, Jarosch H, Pekeris CL (1961) Propagation of Rayleigh waves in the earth. Geophys Jour Roy Astron Soc (London) 4: 219–241.

    Google Scholar 

  • Alterman Z, Kornfeld P (1966) Effect of a fluid core on propagation of an SH-torque pulse from a point-source in a sphere. Geophys 31: 741–763.

    Article  Google Scholar 

  • Ansell JH (1978) On the scattering of SH waves from a point source by a sphere. Geophys Jour Roy Astron Soc (London) 54: 349–387.

    Google Scholar 

  • Ben-Menahem A (1962) Radiation of seismic body waves from a finite moving source in the earth. Jour Geophys Res 67: 345–350.

    Article  Google Scholar 

  • Ben-Menahem A (1964) Mode-ray duality. Bull Seismol Soc Amer 54: 1315–1321.

    Google Scholar 

  • Benndorf H (1905) Über die Art der Fortpflanzung der Erdbebenwellen in Erdinnern. Mitt Erdbebenkomm Wien 29: 1407.

    Google Scholar 

  • Biswas NN, Knopoff L (1970) Exact earth-flattening calculations for Love waves. Bull Seismol Soc Amer 60: 1123–1137.

    Google Scholar 

  • Bremmer H (1949) Terrestrial Radio Waves. Elsevier, New York, 343 pp.

    Google Scholar 

  • Bromwich TJ I’A (1904) The caustic by reflection, of a circle. Amer Jour Math 26: 33–44.

    Article  Google Scholar 

  • Brune JN (1964) Travel times, body waves, and normal modes of the earth. Bull Seismol Soc Amer 54: 2099–2128.

    Google Scholar 

  • Brune JN (1966) P and S wave travel times and spheroidal normal modes of a homogeneous sphere. Jour Geophys Res 71: 2959–2965.

    Google Scholar 

  • Brune JN, Nafe JE, Alsop LE (1961) The polar phase shift of surface waves on a sphere. Bull Seismol Soc Amer 51: 247–257.

    Google Scholar 

  • Cayley A (1857) A memoir upon caustics. Phil Trans Roy Soc (London) A147: 273–312.

    Google Scholar 

  • Chapman CH (1969) Seismic wave diffraction theory. Ph.D. Thesis, Cambridge University.

    Google Scholar 

  • Duwalo G, Jacobs JA (1959) Effects of a liquid core on the propagation of seismic waves. Canad Jour Phys 37: 109–128.

    Article  Google Scholar 

  • Engdahl ER (1968) Seismic waves within Earth’s outer core: multiple reflection. Science 161: 263–264.

    Article  Google Scholar 

  • Engdahl ER, Flinn EA, Romney CR (1970) Seismic waves reflected from the Earth’s inner core. Nature 228: 852–853.

    Article  Google Scholar 

  • Franz W (1954) Über die Greenschen Funktionen des Zylinders und der Kugel. Zeit Naturforschung 9a: 705–716.

    Google Scholar 

  • Gans R (1915) Fortpflanzung des Lichtes durch ein inhomogenes Medium. Ann Phys 47: 709–736.

    Article  Google Scholar 

  • Gilbert F (1976) The representation of seismic displacements in terms of travelling waves. Geophys Jour Roy Astron Soc (London) 44: 275–280.

    Google Scholar 

  • Gilbert F, Helmberger DV (1972) Generalized ray theory for a layered sphere. Geophys, Jour Roy Astron Soc (London) 27: 57–80.

    Google Scholar 

  • Gilbert F, MacDonald GJF (1960) Free oscillations of the earth. I. Toroidal oscillations. Jour Geophys Res 65: 675–693.

    Article  Google Scholar 

  • Gutenberg B (1951) PKKP, P’P’ and the Earth’s core. Trans Amer Geophys Union 32: 373–390.

    Google Scholar 

  • Herrin E (1968) Seismological tables for P phases. Bull Seismol Soc Amer 58: 1193–1241.

    Google Scholar 

  • Imai I (1954) Die Beugung Electromagnetischer Wellen an einen Kreiszylinder. Zeit Phys 137: 31–48.

    Article  Google Scholar 

  • Jacobs JA (1975) The Earth’s Core. Academic Press, London, 253 pp.

    Google Scholar 

  • Jeans JH (1923) The propagation of earthquake waves. Proc Roy Soc (London) A102: 554–574.

    Google Scholar 

  • Jeffreys H, Lapwood ER (1957) The reflection of a pulse within a sphere. Proc Roy Soc (London) A241: 455–479.

    Google Scholar 

  • Jobert N (1960) Calcul de la dispersion des ondes de Love de grand periode a la surface de la terre. Ann Geophys 16: 393–413.

    Google Scholar 

  • Keller JB, Rubinow SI, Goldstein M (1963) Zeros of Hankel functions and poles of scattering amplitudes. Jour Math Phys 4: 829–832.

    Article  Google Scholar 

  • Kennett BLN (1972) Seismic wave scattering by obstacles on interfaces. Geophys Jour Roy Astron Soc (London) 28: 249–266.

    Google Scholar 

  • Landisman M, Satô Y, Nafe J (1965) Free vibrations of the earth and the properties of its deep interior regions. Part I. Density. Geophys Jour Roy Astron Soc (London) 9: 439–502.

    Google Scholar 

  • Langer RE (1931) On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order. Trans Amer Math Soc 33: 23–64.

    Article  Google Scholar 

  • Langer RE (1937) On the connection formulas and the solutions of the wave equation. Phys Rev 51: 669–676.

    Article  Google Scholar 

  • Luneburg RK (1964) Mathematical Theory of Optics. University of California Press, Berkeley.

    Google Scholar 

  • Nussenzveig HM (1965) High-frequency scattering by an impenetrable sphere. Ann Phys 34: 23–95.

    Article  Google Scholar 

  • Odaka T (1978) Derivation of asymptotic frequency equations in terms of ray and normal mode theory and some related problems. Jour Phys Earth 26: 105–121.

    Article  Google Scholar 

  • Pekeris CL (1965) Asymptotic theory of the free torsional oscillations of the earth. Proc Natl Acad Sci (US) 53: 1253–1261.

    Article  Google Scholar 

  • Richards PG (1973) Calculation of body waves, for caustics and tunnelling in core phases. Geophys Jour Roy Astron Soc (London) 35: 243–264.

    Article  Google Scholar 

  • Richards PG (1976) On the adequacy of plane-wave reflection/transmission coefficients in the analysis of seismic body waves. Bull Seismol Soc Amer 66: 701–717.

    Google Scholar 

  • Sato R (1969) Body wave amplitude near shadow boundary: SH wave. Jour Phys Earth 17: 1–12.

    Article  Google Scholar 

  • Sato R, Lapwood ER (1977) The asymptotic distribution of torsional eigenfrequencies of a spherical shell. I. Jour Phys Earth 25: 257–282.

    Article  Google Scholar 

  • Satô Y (1961) Normal mode interpretation of the sound propagation in whispering galleries. Nature 189: 475–476.

    Article  Google Scholar 

  • Satô Y, Usami T, Landisman M, Ewing M (1963) Basic study of the oscillations of a sphere, Part V. Propagation of Torsional disturbances on a radially heterogeneous sphere. Case of a homogeneous mantle with a liquid core. Geophys Jour Roy Astron Soc (London) 8: 44–63.

    Google Scholar 

  • Satô Y, Usami T, Landisman M (1968) Theoretical seismograms of torsional disturbances excited at a focus within a heterogeneous spherical earth—case of a Gutenberg— Bullen A’ earth model. Bull Seismol Soc Amer 58: 133–170.

    Google Scholar 

  • Scholte JGJ (1956) On Seismic Waves in a Spherical Earth. Publ. 65, Roy. Nederland Meteorological Institute, The Hague, 55 pp.

    Google Scholar 

  • Shimamura H, Sato R (1965) Model experiments on body waves—travel times, amplitudes, wave-forms and attentuation. Jour Phys Earth 13: 10–33.

    Article  Google Scholar 

  • Shimshoni M, Ben-Menahem A (1970) Computation of the divergence coefficient for seismic phases. Geophys Jour Roy Astron Soc (London) 21: 285–294.

    Google Scholar 

  • Shimshoni M, Sylman Y, Ben-Menahem A (1973) Theoretical amplitudes of body waves from a dislocation source in the earth. II. Core phases. Phys Earth Planet Int 7: 59–91.

    Article  Google Scholar 

  • Sills LB (1978) Scattering of horizontally polarized shear waves by surface irregularities. Geophys Jour Roy Astron Soc (London) 54: 319–348.

    Google Scholar 

  • Singh SJ, Ben-Menahem A (1969a). Decoupling of the vector wave equation of elasticity for radially heterogeneous media. Jour Acoust Soc Amer 46: 655–660.

    Article  Google Scholar 

  • Singh SJ, Ben-Menahem A (1969b) Asymptotic theory of body waves in a radially heterogeneous earth. Bull Seismol Soc Amer 59: 2039–2059.

    Google Scholar 

  • Singh SJ, Ben-Menahem A, Shimshoni M (1972) Theoretical amplitudes of body waves from a dislocation source in the earth. I. Core reflections. Phys Earth Planet Int 5: 231–263.

    Article  Google Scholar 

  • Sommerfeld A (1964) Partial Differential Equations in Physics. Academic Press, New York, 335 pp.

    Google Scholar 

  • Sommerfeld A (1964) Optics. Academic Press, New York, 383 pp.

    Google Scholar 

  • Sylman Y, Shimshoni M, Ben-Menahem A (1974) Theoretical amplitudes of body waves from a dislocation source in the earth. III. P, S and surface reflections. Phys Earth Planet Int 8: 130–147.

    Article  Google Scholar 

  • Van der Pol B, Bremmer H (1937) The diffraction of electromagnetic waves from an electrical point-source round a finitely conducting sphere, with application to radiotelegraph, and the theory of the rainbow. Phil Mag (Ser 7) 24: 141–176, 825-864.

    Google Scholar 

  • Vered M, Sylman Y, Ben-Menahem A (1974) Generalized reflection and transmission coefficients for seismic sources in a multi-layered spherical earth model. Pure Appl Geophys 112: 821–835.

    Article  Google Scholar 

  • Watson GN (1918) The diffraction of electric waves by the earth. Proc Roy Soc (London) A95: 83–99.

    Google Scholar 

  • Woodhouse JH (1972) Diffraction by anomalous regions in the earth’s mantle. Geophys Jour Roy Astron Soc (London) 32: 295–324.

    Google Scholar 

  • Yanovskaya TB (1958) The dispersion of Rayleigh waves in a spherical layer. Izv Geophys Ser 801-817 (English translation, 461-467).

    Google Scholar 

  • Zoeppritz K, Geiger L, Gutenberg B (1912) Über Erdbeben wellen. V Nachr Kgl Ges Wiss Göttingen Math-Phys Kl, 121–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ben-Menahem, A., Singh, S.J. (1981). Asymptotic Theory of the Earth’s Normal Modes. In: Seismic Waves and Sources. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5856-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5856-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5858-2

  • Online ISBN: 978-1-4612-5856-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics