Waves in Infinite Media

  • Ari Ben-Menahem
  • Sarva Jit Singh

Abstract

A wave is a disturbance, usually periodic, that travels with finite velocity through a medium. Sound waves, water waves, and electromagnetic waves are some examples. All wave motions have two important characteristics in common: First, energy is propagated to distant points and, second, the disturbance travels through the medium without giving the medium as a whole any permanent displacement. Each successive particle of the medium performs a motion similar to its predecessor’s but later in time, and returns to its origin. Whatever the nature of the medium that transmits the waves, be it air, a stretched string, a liquid, or an electrical cable, these two properties enable us to relate all wave motions together. Indeed, many types of waves are governed by a second-. order linear partial differential equation
$${\nabla ^2}\Psi = {1 \over {{c^2}}}{{{\partial ^2}\Psi } \over {\partial {t^2}}},$$
where Ψ(r, t) represents the disturbance traveling with the velocity c. Equation (2.1) is known as the wave equation.

Keywords

Attenuation Triad Verse Cylin Prolate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ben-Menahem A, Singh SJ (1968a) Eigenvector expansions of Green’s dyads with applications to geophysical theory. Geophys Jour Roy Astron Soc (London) 16: 417–452.Google Scholar
  2. Ben-Menahem A, Singh SJ (1968b) Multipolar elastic fields in a layered half-space. Bull Seismol Soc Amer 58: 1519–1572.Google Scholar
  3. Eisenhart LP (1934a) Separable systems of Stäckel. Ann Math 35: 284–305.CrossRefGoogle Scholar
  4. Eisenhart LP (1934b) Separable systems in Euclidean 3-space. Phys Rev 45: 427–428.CrossRefGoogle Scholar
  5. Erdélyi A (1937) Zur Theorie der Kugelwellen. Physica 4: 107–120.CrossRefGoogle Scholar
  6. Hansen WW (1935) A new type of expansion in radiation problems. Phys Rev 47: 139–143.CrossRefGoogle Scholar
  7. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25: 377–445.CrossRefGoogle Scholar
  8. Moon P, Spencer DE (1961) Field Theory Handbook. Springer, New York.Google Scholar
  9. Morse PM, Feshbach H (1953) Methods of Theoretical Physics, Parts I and II. McGraw-Hill, New York.Google Scholar
  10. Sommerfeld A (1909) Über die Ausbreitung der Wellen in der drahtlosen. Telegraphic Ann Phys 28: 665–736.CrossRefGoogle Scholar
  11. Sommerfeld A (1964) Partial Differential Equations in Physics. Academic Press, New York, 335 pp.Google Scholar
  12. Sternberg E, Eubanks RA (1957) On stress functions for elastokineics and the integration of the repeated wave equation. Quart Appl Math 15: 149–153.Google Scholar
  13. Stratton JA (1941) Electromagnetic Theory. McGraw-Hill, New York.Google Scholar
  14. Van der Pol B (1936) A generalization of Maxwell’s definition of solid harmonics to waves in n dimensions. Physica 3: 393–397.CrossRefGoogle Scholar
  15. Watson GN (1966) A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, 804 pp.Google Scholar
  16. Weyl H (1919) Ausbreitung elektromagnetischer Wellen über einen ebenen Leiter. Ann Phys 60: 481–500.CrossRefGoogle Scholar
  17. Wheeler LT, Sternberg E (1968). Some theorems in classical elastodynamics. Archive for Rational Mechanics and Analysis 31: 51–90; Corrigendum 31: 402.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Ari Ben-Menahem
    • 1
  • Sarva Jit Singh
    • 2
  1. 1.Weizmann Institute of ScienceRehovotIsrael
  2. 2.Maharshi Dayanand UniversityRohtakIndia

Personalised recommendations