Sequence Analysis of Polypeptides by Direct Chemical Ionization Mass Spectrometry

  • Steven A. Carr
  • Vernon N. Reinhold
Part of the Experimental Biology and Medicine book series (EBAM, volume 3)


The identification and structural elucidation of small, biologically active peptides is a challenging analytical problem. These compounds are often not amenable to classical protein sequencing methods because of the presence of N-terminal blocking groups, carbohydrate side chains, or covalently modified amino acids. The low volatility and thermal lability of most polypeptides requires that they be derivatized prior to conventional electron impact (EI) or chemical ionization (CI) mass spectrometry for complete structural evaluation (1). Unfortunately, peptides of biological origin are often obtainable only in sub-nanomole amounts which makes sample consuming derivatization highly undesirable. Furthermore, chemical treatment may modify or destroy sensitive functional groups present in the peptide.


Chemical Ionization Mass Spectrometry Modify Amino Acid Field Desorption Coated Wire Carbohydrate Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Biemann, K. (1980) in Biochemical Applications of Mass Spectrometry, First Supplementary Volume (Waller, G.R., and Dermer, O.C., eds) pp. 469–525, Wiley Interscience, New York.Google Scholar
  2. 2).
    Beckey, H.D. (1977) Principles of Field Ionization and Field Desorption Mass Spectrometry, Pergamon Press, Oxford.Google Scholar
  3. 3).
    Mumma, R.O. and Vastola, F.J. (1972) Org. Mass Spectrom. 6, 1373CrossRefGoogle Scholar
  4. Posthumus, M.A., Kistemaker, P.G., Meuzelaar, H.L.C. and Ten Noever de Brauw, M.C. (1978) Anal. Chem. 50, 985.CrossRefGoogle Scholar
  5. 4).
    Grade, H. and Cooks, R.G. (1978) J. Am. Chem. Soc. 100, 5615CrossRefGoogle Scholar
  6. Ens, W., Standing, K.G., Chait, B.T. and Field, F.H. (1981) Anal. Chem. 53, 1241.CrossRefGoogle Scholar
  7. 5).
    Macfarlane, R.D. and Torgerson, D.F. (1976) Science 191, 920PubMedCrossRefGoogle Scholar
  8. Macfarlane, R.D. (1980) in Biochemical Applications of Mass Spectrometry, First Supplementary Volume (Waller, G.R., and Dermer, O.C., eds) pp. 1209–1218, Wiley Interscience, New York.Google Scholar
  9. 6).
    Barber, M., Bordoli, R.S., Garner, G.V., Gordon, D.B., Sedgwick, R.D., Tetler, L.W. and Tyler, A.N. (1981) Biochem. J. 197, 401.PubMedGoogle Scholar
  10. 7).
    Baldwin, M.A. and McLafferty, F.W. (1973) Org. Mass Spectrom. 7 1353CrossRefGoogle Scholar
  11. Hunt, D.F., Shabanowitz, J., Botz, F.K. and Brent, D.A. (1977) Anal. Chem. 49, 1160.CrossRefGoogle Scholar
  12. 8).
    Cotter, R.J. (1980) Anal. Chem. 52, 1589A.CrossRefGoogle Scholar
  13. 9).
    Reinhold, V.N. and Carr, S.A. (1981), submitted to Anal. Chem.Google Scholar
  14. 10).
    Mudgett, M., Bowen, D.V., Field, F.H. and Kindt, T.J. (1976) Biomed. Mass Spectrom. 4 159.CrossRefGoogle Scholar
  15. 11).
    Beuhler, R.J., Flanigan, E., Greene, L.J. and Friedman, L. (1974) Biochemistry 13, 5060.PubMedCrossRefGoogle Scholar

Copyright information

© The HUMANA Press Inc. 1982

Authors and Affiliations

  • Steven A. Carr
    • 1
  • Vernon N. Reinhold
    • 1
  1. 1.Department of Biological ChemistryHarvard Medical SchoolBostonUSA

Personalised recommendations