Skip to main content

Part of the book series: Experimental Biology and Medicine ((EBAM,volume 2))

Abstract

Copper, in trace quantities, is required by all living organisms to maintain proper cellular function. In excess, copper is extremely toxic due to the chemical reactivity of the element. To maintain the necessary balance between required and toxic quantities of copper, living organisms have evolved with mechanisms to conserve copper when the dietary level is low and rid the body of excess when necessary. The following discussion describes our current knowledge of the mechanisms involved in the regulation of copper homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kirchgessner, and E. Grassmann, in “Trace Element Metabolism in Animals,” C.F. Mills, Ed., Livingstone, Edinburgh, 1970, p. 277.

    Google Scholar 

  2. N. Marceau, N. Aspin, and A. Sass-Kortsak, Am. J. Physiol., 218, 377 (1970).

    PubMed  CAS  Google Scholar 

  3. B.C. Starcher, J. Nutr., 97, 321 (1969).

    PubMed  CAS  Google Scholar 

  4. G.W. Evans, P.F. Majors, and W.E. Cornatzer, Biochem. Biophys. Res. Commun., 40, 1142 (1970).

    Article  PubMed  CAS  Google Scholar 

  5. P. Pulido, J.H.R. Kagi, and B.L. Vallee, Biochemistry,. 5, 1768 (1966).

    Article  PubMed  CAS  Google Scholar 

  6. W.T. Johnson, and G.W. Evans, Biochem. Biophys. Res. Commun., 96, 10 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. G.W. Evans, and P.E. Johnson, in “Trace Element Metabolism in Animals-3,” M. Kirchgessner, Ed., Institut fur Ernahrungsphysiologie, Friesing-Weihenstephan, W. Germany, 1978, p. 98.

    Google Scholar 

  8. A.C. Hall, B.W. Young, and I. Bremner, J. Inorgan. Biochem., 11, 57 (1979).

    Article  CAS  Google Scholar 

  9. R. Mason, F.O. Brady, and M. Webb, Br. J. Nutr., 45, 391 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. G.W. Evans, Physiol. Rev., 53, 535 (1973).

    PubMed  CAS  Google Scholar 

  11. D.B. Milne, and S.T. Omaye, Int. J. Vitam. Nutr. Res., 50, 301 (1980).

    CAS  Google Scholar 

  12. S. Lau, and B. Sarkar, J. Biol. Chem., 246, 5938 (1971).

    PubMed  CAS  Google Scholar 

  13. R.A. Bradshaw, W.T. Shearer, and F.R.N. Gurd, J. Biol. Chem., 243, 3817 (1968).

    PubMed  CAS  Google Scholar 

  14. J.W. Dixon, and B. Sarkar, J. Biol. Chem., 249, 5872 (1974).

    PubMed  CAS  Google Scholar 

  15. C.A. Goresky, T.H. Holmes, and A. Sass-Kortsak, Can. J. Physiol. Pharmacol., 46, 771 (1968).

    Article  CAS  Google Scholar 

  16. T. Terao, and C.A. Owen, Jr., Am. J. Physiol., 224, 682 (1973).

    CAS  Google Scholar 

  17. G.W. Evans, M.L. Wolentz, and C.I. Grace, Nutr. Rep. Int., 12, 261 (1975).

    CAS  Google Scholar 

  18. H. Hartmann, and U. Weser, Biochim. Biophys. Acta, 491, 211 (1977).

    CAS  Google Scholar 

  19. I. Bremner, and B.W. Young, Biochem. J., 155, 631 (1976).

    PubMed  CAS  Google Scholar 

  20. I. Bremner, and B.W. Young, Biochem. J., 157, 517 (1976).

    PubMed  CAS  Google Scholar 

  21. H. Porter, Biochem. Biophys. Res. Commun.,. 56, 661 (1974).

    Article  CAS  Google Scholar 

  22. D.R. Winge, R. Premakumar, R.D. Wiley, and K.V. Rajagopalan, Arch. Biochem. Biophys., 170, 253 (1975).

    Article  PubMed  CAS  Google Scholar 

  23. J.R. Riordan, and I. Gower, Biochem. Biophys. Res. Commun., 66, 678 (1975).

    Article  CAS  Google Scholar 

  24. L. Broman, Acta Soc. Med. Upsalien, 69, Suppl. 7, 1 (1964).

    Google Scholar 

  25. C.A. Owen, Jr., Am. J. Physiol., 209, 900 (1965).

    CAS  Google Scholar 

  26. N. Marceau, and N. Aspin, Am. J. Physiol., 222, 106 (1972).

    PubMed  CAS  Google Scholar 

  27. C.A. Owen, Jr., Am. J. Physiol., 221, 1722 (1971).

    CAS  Google Scholar 

  28. N. Marceau, and N. Aspin, Biochim. Biophys. Acta, 328, 338 (1973).

    CAS  Google Scholar 

  29. H.S. Hsieh, and E. Frieden, Biochem. Biophys. Res. Commun., 67, 1326 (1975).

    Article  CAS  Google Scholar 

  30. P.T. Mearrick, and S.P. Mistilis, J. Lab. Clin. Med., 74, 421 (1969).

    PubMed  CAS  Google Scholar 

  31. G.W. Evans, and W.E. Cornatzer, Proc. Soc. Exp. Biol. Med., 136, 719 (1971).

    CAS  Google Scholar 

  32. J.L. Gollan, Clin. Sci. Mol. Med., 49, 237 (1975).

    PubMed  CAS  Google Scholar 

  33. K.O. Lewis, Gut, 14, 221 (1973).

    Article  PubMed  CAS  Google Scholar 

  34. G.M. McCullars, S. O’Reilly, and M. Brennan, Clin. Chim. Acta, 74, 33 (1977).

    Google Scholar 

  35. J.H. Menkes, J. Alter, G.K. Steigleder, D.R. Weakley, and J.H. Sung, Pediatrics,. 29, 764 (1962).

    PubMed  CAS  Google Scholar 

  36. J.S. OfBrein, and E.L. Sampson, J. Neuropathol. Exp. Neurol., 25, 523 (1966).

    Google Scholar 

  37. D.M. Danks, P.E. Campbell, B.J. Stevens, V. Mayne, and E. Cartwright, Pediatrics, 50, 188 (1972).

    PubMed  CAS  Google Scholar 

  38. D.M. Danks, P.E. Campbell, J. Walker-Smith, B.J. Stevens, J.M. Gillespie, J. Blomfield, and B. Turner, Lancet, 1, 1100 (1972).

    Article  PubMed  CAS  Google Scholar 

  39. D.M. Danks, E. Cartwright, B.J. Stevens, R.R.W. Townley, Science, 179, 1140 (1973).

    Article  PubMed  CAS  Google Scholar 

  40. J.A. Walker-Smith, B. Turner, J. Blomfield, and G. Wise, Arch. Dis. Child., 48, 958 (1973).

    Article  PubMed  CAS  Google Scholar 

  41. A.S. Dekaban, R. Aamodt, W.F. Rumble, G.S. Johnston, and S. O’Reilly, Arch. Neurol., 32, 672 (1975).

    PubMed  CAS  Google Scholar 

  42. T.J. Goka, R.E. Stevenson, P.M. Hefferan, and R.R. Howell, Proc. Natl. Acad. Sci., 73, 604 (1976).

    Article  CAS  Google Scholar 

  43. D.M. Danks, N. Engl. J. Med., 293, 1147 (1975).

    CAS  Google Scholar 

  44. D.M. Danks, E. Cartwright, and B. Stevens, Lancet, 1, 891 (1973).

    Article  PubMed  CAS  Google Scholar 

  45. S.A.K. Wilson, Brain,. 34, 295 (1912).

    Google Scholar 

  46. A.G. Beam, in “The Metabolic Basis of Inherited Disease, 3rd ed.,” J.B. Stanbury, J.C. Wyngaarden, and D.S. Fredrickson, Eds., McGraw-Hill, New York, 1972, p. 1033.

    Google Scholar 

  47. A. Sass-Kortsak, Adv. Clin. Chem., 8, 1 (1965).

    Article  PubMed  CAS  Google Scholar 

  48. I. Scheinberg, and I. Sternlieb, in “Biology of Brain Dysfunction, Vol. 3,” G.E. Gaull, Ed., Plenum, New York, 1975, p. 247.

    Google Scholar 

  49. J.M. Walshe, in “Biochemistry of Copper,” J. Peisach, and W.E. Blumberg, Eds., Academic Press, New York, 1966, p. 475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Humana Press Inc.

About this chapter

Cite this chapter

Evans, G.W., Johnson, W.T. (1982). Copper Homeostasis. In: Sorenson, J.R.J. (eds) Inflammatory Diseases and Copper. Experimental Biology and Medicine, vol 2. Humana Press. https://doi.org/10.1007/978-1-4612-5829-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5829-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-5831-5

  • Online ISBN: 978-1-4612-5829-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics