Uptake of Major Nutrients by Estuarine Plants

  • James J. McCarthy
Part of the Contemporary Issues in Science and Society book series (CISS)


Within the literature that treats the utilization of major nutrients by aquatic plants there is no evidence that the estuarine habitat is unique with regard to plant nutrition. In fact, observed patterns for the relationship between phytoplankton utilization of inorganic nitrogen and phosphorus and the quantity or quality of these nutrients seem to apply generally for organisms of marine, estuarine, and fresh water origin.


Nitrate Reductase Aquatic Plant Continuous Culture Dissolve Organic Nitrogen Nitrate Reductase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, T.F.H. 1977. Scale in microscopic algal ecology: a neglected dimension. Phycologia 16: 253–257.CrossRefGoogle Scholar
  2. 2.
    Berman, T. 1970. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol. Oceanogr. 15: 663–664.CrossRefGoogle Scholar
  3. 3.
    Bird, K.T. 1976. Simultaneous assimilation of ammonium and nitrate by Gelidium nudifrons Gelidiales:Rhodophyla). J. Phycol. 12: 238–241.Google Scholar
  4. 4.
    Broome, S.W., W.W. Woodhouse, and E.D. Seneca. 1975. The relationship of mineral nutrients to growth of Spartina alterniflora in North Carolina: II. The effects of N, P, and Fe fertilizers. Soil. Sci. Soc. Amer. Proc. 39: 301–302.CrossRefGoogle Scholar
  5. 5.
    Burmaster, D.E. 1979. The continuous culture of phytoplankton: mathematical equivalence among three steady-state models. Amer. Natur. 113: 123–134.CrossRefGoogle Scholar
  6. 6.
    Burmaster, D.E. and S.W. Chisholm. 1979. A comparison of two methods for measuring phosphate uptake by Monochrysis lutheri grown in continuous culture. J. Exp. Mar. Biol. Ecol. 39: 187–202.CrossRefGoogle Scholar
  7. 7.
    Caperon, J., S.A. Cattell, and G. Krasnick. 1971. Phytoplankton kinetics in a subtropical estuary: eutrophication. Limnol. Oceanogr. 16: 599–607.CrossRefGoogle Scholar
  8. 8.
    Caperon, J. and D.A. Zieman. 1976. Synergistic effects of nitrate and ammonium ion on the growth and uptake kinetics of Monochrysis lutheri in continuous culture. Mar. Biol. 36: 73–84.CrossRefGoogle Scholar
  9. 9.
    Carpenter, E.J., and R.R.L. Guillard. 1971. Intraspecific differences in nitrate half-saturation constants for three species of marine phytoplankton. Ecology 52: 183–185.CrossRefGoogle Scholar
  10. 10.
    Carpenter, J.M., D.W. Pritchard, and R.C. Whaley. 1969. Observations of eutrophication and nutrient cycles in some coastal plain estuaries, p. 210–221. In: Eutrophication: Causes, consequences, correctives. Natl. Acad. Sci. Publ. 1700.Google Scholar
  11. 11.
    Chapman, A.R.O., J.W. Markham, and K. Luning. 1978. Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J. Phycol. 14: 195–198.CrossRefGoogle Scholar
  12. 12.
    Chisholm, S.W. and R.G. Stross. 1976. Phosphate uptake kinetics in Euglena gracilis (Z) (Euglenophyceae) grown on light/dark cycles. I. Synchronized batch cultures. J. Phycol. 12: 210–217.Google Scholar
  13. 13.
    Chisholm, S.W. and R.G. Stross. 1976. Phosphate uptake kinetics in Euglena gracilis (Z) (Euglenophyceae) grown in light/dark cycles. II. Phased PO4-limited cultures. J. Phycol. 12: 217–222.Google Scholar
  14. 14.
    Conway, H.L. 1977. Interactions of inorganic nitrogen in the uptake and assimilation by marine phytoplankton. Mar. Biol. 39: 221–232.CrossRefGoogle Scholar
  15. 15.
    Conway, H.L. and P.J. Harrison. 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient response of Cheatoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient. Mar. Biol. 43: 33–43.CrossRefGoogle Scholar
  16. 16.
    Darley, W.M. 1974. Silicification and Calcification, p. 655–675. In: W.D.P. Steward (ed.), Algal physiology and biochemistry. Univ. Calif.Google Scholar
  17. 17.
    D’Elia, C. and J.A. DeBoer. 1978. Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J. Phycol. 14: 266–272.CrossRefGoogle Scholar
  18. 18.
    DeManche, J.M., H.C. Curl, Jr., D.W. Lundy, and P.L. Donaghay. 1979. The rapid response of the marine diatom Skeletonema costatum to changes in external and internal nutrient concentration. Mar. Biol. 53: 323–334.CrossRefGoogle Scholar
  19. 19.
    Denny, P. 1972. Sites of nutrient absorption in aquatic macrophytes. J. Ecol. 60: 819–829.CrossRefGoogle Scholar
  20. 20.
    Droop, 1973. Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272.Google Scholar
  21. 21.
    Dugdale, R.C. 1967. Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr. 12: 685–695.CrossRefGoogle Scholar
  22. 22.
    Dugdale, R.C. 1977. Modeling, p. 789–806. In:E.D. Goldberg et al. (eds.). The sea, V. 6. Wiley-Interscience.Google Scholar
  23. 23.
    Dugdale, R.C. and J.J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.CrossRefGoogle Scholar
  24. 24.
    Eppley, R.W., J.L. Coatsworth. 1968. Nitrate and nitrite uptake by Ditylum brightwellii. Kinetics and mechanisms. J. Phycol. 4: 151–156.CrossRefGoogle Scholar
  25. 25.
    Eppley, R.W., J.L. Coatsworth, and L. Solorzano. 1969. Studies of nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14: 194–205.CrossRefGoogle Scholar
  26. 26.
    Eppley, R.W. and E.H. Renger. 1974. Nitrogen assimilation of an oceanic diatom in nitrogen-limited continuous culture. J. Phycol. 10: 15–23.Google Scholar
  27. 27.
    Eppley, R.W., E. H. Renger, W. G. Harrison, and J. J. Cullen. 1979. Ammonium distribution in southern California coastal waters and its role in the growth of phytoplankton. Limnol. Oceanogr. 24: 495–509.CrossRefGoogle Scholar
  28. 28.
    Eppley, R. W., E. H. Renger, E. L. Venrick, and M. M. Mullin. 1973. A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean. Limnol. Oceanogr. 18: 534–551.CrossRefGoogle Scholar
  29. 29.
    Eppley, R.W. and J.N. Rogers. 1970. Inorganic nitrogen assimilation of Ditylum brightwellii, a marine plankton diatom. J. Phycol. 6: 344–351.Google Scholar
  30. 30.
    Eppley, R.W., J.N. Rogers, and J.J. McCarthy. 1969. Half-saturation constants for uptake of nitrate and ammonia by marine phytoplankton. Limnol. Oceanogr. 114: 912–920.CrossRefGoogle Scholar
  31. 31.
    Eppley, R.W., J.N. Rogers, J.J. McCarthy, and A. Sournia. 1971. Light/dark periodicity in nitrogen assimilation of the marine phytoplankton Skeletonema costatum and Coccolithus huxleyi in N-limited chemostat culture. J. Phycol. 7: 150–154.Google Scholar
  32. 32.
    Eppley, R.W., J.H. Sharp, E.H. Renger, M.J. Perry, and W.G. Harrison. 1977. Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Ocean. Mar. Biol. 39: 111–120.CrossRefGoogle Scholar
  33. 33.
    Eppley, R.W. and W.H. Thomas. 1968. Comparison of half-saturation constants for growth and nitrate uptake of a marine phytoplankton. J. Phycol. 5: 375–379.CrossRefGoogle Scholar
  34. 34.
    Falkowski, P.G. 1975. Nitrate uptake in marine phytoplankton (nitrate, chloride) activated adenosine triphosphatase from Skeletonema costatum (Bacillariophycaea). J. Phycol. 11: 323–326.Google Scholar
  35. 35.
    Falkowski, P.G. and R.B. Rivkin. 1976. The role of glutamine synthetase in the incorporation of ammonium in Skeletonema costatum (Bacillariophyceae). J. Phycol. 12: 448–450.Google Scholar
  36. 36.
    Ferguson, A.R. 1969. The nitrogen metabolism of Spirodella oligorrhiza II. Control of the enzymes of nitrate assimilation. Planta. 88: 353–363.CrossRefGoogle Scholar
  37. 37.
    Ferguson, A.R. and E.G. Bollard. 1969. The nitrogen metabolism of Spirodella oligorrhiza I. Utilization of ammonium, nitrate and nitrite. Planta. 88: 344–352.CrossRefGoogle Scholar
  38. 38.
    Finenko, Z.Z. and D.K. Drupatkina-Akinina. 1974. Effect of inorganic phosphorus on the growth rate of diatoms. Mar. Biol. 26: 193–201.CrossRefGoogle Scholar
  39. 39.
    Gallagher, J.L. 1975. Effect of an ammonium nitrate pulse on the growth and elemental composition of natural stands of Spartina alterniflora and Juncus roemerianus. Amer. J. Bot. 62: 644–648.CrossRefGoogle Scholar
  40. 40.
    Gayler, G.R. and W.R. Morgan. 1976. An NADP-dependent glutamate dehydrogenase in chloroplasts from the marine green alga Caulerpa simpliciuscula. Plant Physiol. 58: 283–287.CrossRefGoogle Scholar
  41. 41.
    Gieskes, W.W.C. and G.W. Kraay. 1979. Current 14C methods for measuring primary production: gross underestimates in oceanic waters. Neth. J. Sea Res. 13:Google Scholar
  42. 42.
    Goldman, J.C. 1977. Steady state growth of phytoplankton in continuous culture: Comparison of internal and external nutrient equations. J. Phycol. 13: 251–258.Google Scholar
  43. 43.
    Goldman, J.C. and J.J. McCarthy. 1978. Steady state growth and ammonium uptake of a fast-growing marine diatom. Limnol. Oceanogr. 23: 695–703.CrossRefGoogle Scholar
  44. 44.
    Goldman, J.L. and D.G. Peavey. 1979. Steady state growth and chemical composition of the marine chlorophyle Dunaliella tertiolecta in nitrogen-limited continuous cultures. Appl. Environ. Microbiol. 38: 894–901.Google Scholar
  45. 45.
    Goldman, J.C. and J.H. Ryther. 1975. Nutrient transformation in mass cultures of marine algae. J. Environ. Engineer. Div. ASCE Proc. Paper 11358. 101: 351–364.Google Scholar
  46. 46.
    Guillard, R.R.L. 1963. Organic sources of nitrogen for marine centric diatoms. In: Symposium on Marine Microbiology, pp. 93–104 (ed. C.H. Oppenheimer). Charles C. Thomas, Springfield, Illinois.Google Scholar
  47. 47.
    Haines, K.C. and P.A. Wheeler. 1978. Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). J. Phycol. 14: 319–324.CrossRefGoogle Scholar
  48. 48.
    Hanisak, M.D. and M.M. Harlin. 1978. Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). J. Phycol. 14: 450–454.CrossRefGoogle Scholar
  49. 49.
    Harlin, M.M. and J.S. Cragie. 1978. Nitrate uptake by Laminaria longicruris (Phaeophyceae). J. Phycol. 14: 464–467.CrossRefGoogle Scholar
  50. 50.
    Harris, E. 1959. The nitrogen cycle in Long Island Sound. Bull. Bingham oceanogr. Coll. 17: 31–65.Google Scholar
  51. 51.
    Harris, G. and B. Piccinin. 1977. Photosynthesis by natural phytoplankton populations. Arch. Hydrobiol. 4: 405–457.Google Scholar
  52. 52.
    Harvey, H.W. 1963. The chemistry and fertility of sea waters. Cambridge Univ.Google Scholar
  53. 53.
    Harvey, W.A. and J. Caperon. 1976. The rate of utilization of urea, ammonium, and nitrate by natural populations of marine phytoplankton in a eutrophic environment. Pac. Sci. 30: 329–340.Google Scholar
  54. 54.
    Jannasch, H. 1974. Steady state and the chemostat in ecology Limnol Oceanogr. 19: 716–720.Google Scholar
  55. 55.
    Jeanjean, B. and G. Ducet. 1974. Carrier turnover and phosphate uptake in Chlorella pyrenoidosa. In U. Zimmerman and J. Dainty (eds.), Membrane transport in plants. Springer-Verlag.Google Scholar
  56. 56.
    Kilham, P. 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnol. Oceanogr. 16: 10–18.CrossRefGoogle Scholar
  57. 57.
    Kuenzler, E.J. 1965. Glucose -6- phosphate utilization by marine algae. J. Phycol. 1: 156–164.CrossRefGoogle Scholar
  58. 58.
    Kuenzler, E.J. 1970. Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol. 6: 7–13.Google Scholar
  59. 59.
    Kuhl, A. 1974. Phosphorus, p. 636–654. In W.D.P. Steward (ed.), Algal physiology and biochemistry. Univ. Calif.Google Scholar
  60. 60.
    Lean, D.R.S. and C. Nalewajko. 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish. Res. Bd. Can. 33: 1312–1323.CrossRefGoogle Scholar
  61. 61.
    Leftley, J.W. and P.J. Syrett. 1973. Urease and ATP: Urea amidolyase activity in unicellular algae. J. Gen. Microbiol. 77: 109–115.Google Scholar
  62. 62.
    Liu, M.S. and J.A. Hellebust. 1974. Utilization of amino acids as nitrogen sources and their effects on nitrate reductase in the marine diatom Cyclotella cryptica. Can. J. Microbiol., 20: 1119–1125.CrossRefGoogle Scholar
  63. 63.
    MacIsaac, J.J. and R.C. Dugdale. 1969. The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep-Sea Res. 16: 45–57.Google Scholar
  64. 64.
    MacIsaac, J.J. and R.C. Dugdale. 1972. Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea. Deep-Sea Res. 19: 209–232.Google Scholar
  65. 65.
    Malone, T.C., C. Garside, K.C. Haines, and O.A. Roels. 1975. Nitrate uptake and growth of Chaetoceros sp. in large outdoor continuous culture. Limnol. Oceanogr. 20: 9–19.CrossRefGoogle Scholar
  66. 66.
    McCarthy, J.J. and E.S. Carpenter. 1979. Oscillatoria (Trichodesmium) theibautii (Cyanophyta) in the central North Atlantic Ocean. J. Phycol. 15: 75–82.Google Scholar
  67. 67.
    McCarthy, J.J. and R.W. Eppley. 1972. A comparison of chemical, isotopic, and enzymatic methods for measuring nitrogen assimilation of marine phytoplankton. Limnol. Oceanogr. 17: 371–382.CrossRefGoogle Scholar
  68. 68.
    McCarthy, J.J. and J.C. Goldman. 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science. 203: 670–672.CrossRefGoogle Scholar
  69. 69.
    McCarthy, J.J., W.R. Taylor, and J.L. Taft. 1975. The dynamics of nitrogen and phosphorus cycling in the open waters of the Chesapeake Bay, 664–681. In: T.M. Church (ed.), Marine chemistry in the coastal environment. ACS Symposium Series, No. 18.CrossRefGoogle Scholar
  70. 70.
    McCarthy, J.J., W.R. Taylor, and J.L. Taft. 1977. Nitrogenous nutrition of the plankton in the Chesapeake Bay. I. Nutrient availability and phytoplankton preferences. Limnol. Oceanogr. 22: 996–1010.CrossRefGoogle Scholar
  71. 71.
    McRoy, C.P. and V. Alexander. 1975. Nitrogen kinetics in aquatic plants in artic Alaska. Aquat. Bot. 1: 3–10.CrossRefGoogle Scholar
  72. 72.
    McRoy, C.P. and R.J. Barsdate. 1970. Phosphate absorption in eelgrass. Limnol. Oceanogr. 15: 6–13.Google Scholar
  73. 73.
    McRoy, C.P., R.J. Barsdate, and M. Nebert. 1972. Phosphorus cycling in an eelgrass (Zostera marina L,) ecosystem. Limnol. Oceanogr. 17: 58–67.CrossRefGoogle Scholar
  74. 74.
    McRoy, C.D. and J.J. Goering. 1974. Nutrient transfer between the seagrass Zostera marina and its epiphytes. Nature. 298: 173–174.CrossRefGoogle Scholar
  75. 75.
    Mickelson, M.J., H. Maske, and R.C. Dugdale. 1979. Nutrient-determined dominance in multispecies chemostat cultures of diatoms. Limnol. Oceanogr. 24: 298–315.CrossRefGoogle Scholar
  76. 76.
    Morris, I. 1974. Nitrogen assimilation and protein synthesis, p. 583–609. In: W.D.P. Stewart (ed.), Algal physiology and biochemistry. Univ. Calif.Google Scholar
  77. 77.
    Morris, I. and P.J. Syrett. 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Mikrobiol. 47: 32–41.CrossRefGoogle Scholar
  78. 78.
    Nichols, D.S. and D.R. Keeney. 1976. Nitrogen nutrition of Myriophyllum spicatum: uptake and translocation of 15n by shoots and roots. Freshwat. Biol. 6: 145–154.CrossRefGoogle Scholar
  79. 79.
    North, B.B. and G.C. Stephens. 1972. Amino acid transport in Nitzschia ovalis Arnott. J. Phycol. 8: 64–68.Google Scholar
  80. 80.
    Packard, T.T. 1973. The light dependence of nitrate reductase activity in marine phytoplankton. Limnol. Oceanogr. 18: 466–469.CrossRefGoogle Scholar
  81. 81.
    Perry, M.J. 1972. Alkaline phosphatase activity in subtropical central North Pacific waters using a sensitive fluorometric method. Mar. Biol. 15: 113–119.CrossRefGoogle Scholar
  82. 82.
    Perry, M.J. 1976. Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in oligotrophic waters of the central North Pacific. Limnol. Oceanogr. 21: 88–107.CrossRefGoogle Scholar
  83. 83.
    Rhee, G-Yull. 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495–506.Google Scholar
  84. 84.
    Reimold, R.J. 1972. The movement of phosphorus through the saltmarsh cord grass Spartina alterniflora Loisel. Limnol. Oceanogr. 17: 606–611.CrossRefGoogle Scholar
  85. 85.
    Schell, D.M. 1974. Uptake and regeneration of free amino acids in marine waters of southeast Alaska. Limnol. Oceanogr. 19: 260–170.CrossRefGoogle Scholar
  86. 86.
    Seliger, H.H. and M.E. Loftus. 1975. Dinoflagellate accumulations in Chesapeake Bay. p. 181–205. In: V.R. LoCicero (ed.), Proceedings of the first international conference on toxic dinoflagellate blooms. Mass. Sci. and Tech. Found.Google Scholar
  87. 87.
    Simpson, H.J., D.E. Hammond, B.L. Deck, and S.C. Williams. 1975. Nutrient budgets in the Hudson River estuary, p. 618–635. In: T. Church (ed.), Marine chemistry in the coastal environment. ASC Symposium Series, No. 18.Google Scholar
  88. 88.
    Stanley, D., and J.E. Hobbie. 1979. Nitrogen recycling in a North Carolina coastal river. Limnol. Oceanogr.Google Scholar
  89. 89.
    Stewart, G.R., J.A. Lee, and T.O. Orebamjo. 1972. Nitrogen metabolism of halophytes. I. nitrate reductase activity in Suaeda maritima. New Phytol. 71: 263–267.CrossRefGoogle Scholar
  90. 90.
    Stewart, G.R., J.A. Lee, and T.O. Orebamjo. 1973. Nitrogen metabolism of halophytes II. nitrate availability and utilization. New Phyto. 72: 539–546.CrossRefGoogle Scholar
  91. 91.
    Stewart, R.G. and D. Rhodes. 1977. A comparison of the characteristics of glutamine synthetase and glutamate dehydrogenase from New Phytol. 79–257–268.Google Scholar
  92. 92.
    Strickland, J.D.H., O. Holm-Hansen, R.W. Eppley, and R.J. Linn. 1969. The use of a deep tank in plankton ecology - I. Studies of the growth and composition of phytoplankton at low nutrient levels. Limnol. Oceanogr. 14: 23–34.CrossRefGoogle Scholar
  93. 93.
    Taft, J.L., A.J. Elliott, and W.R. Taylor. 1978. Box model analysis of Chesapeake Bay ammonium and nitrate fluxes, p. 115–130. In: M. Wiley (ed.), Estuarine interactions. Academic.Google Scholar
  94. 94.
    Taft, J.L., M.E. Loftus and W.R. Taylor. 1977. Phosphate uptake from phosphomonoesters by phytoplankton in Chesapeake Bay. Limnol. Oceanogr. 22: 1012–1021.CrossRefGoogle Scholar
  95. 95.
    Taft, J.L. and W.R. Taylor. 1976a. Phosphorus dynamics in some coastal plain estuaries, p. 79–89. In M. Wiley (ed.), Taft, J.L. and W.R. Taylor. 1. Academic Press.Google Scholar
  96. 96.
    Taft, J.L. and W.R. Taylor. 1976b. Phosphorus distribution in the Chesapeake Bay. Ches. Sci. 17: 67–73.CrossRefGoogle Scholar
  97. 97.
    Taft, J.L., W.R. Taylor, and J.J. McCarthy. 1975. Uptake and release of phosphorus by phytoplankton in the Chesapeake Bay estuary. Mar. Biol. 33: 21–32.CrossRefGoogle Scholar
  98. 98.
    Tempest, D.W., J.L. Meers, and C.M. Brown. 1973. Glutamate synthetase (GOGAT): a key enzyme in the assimilation of ammonia by prokaryotic organisms, p. 167–182. In: S. Prusiner and E.R. Stadtman (eds.), The enzymes of glutamine metabolism. Academic Press.Google Scholar
  99. 99.
    Thomann, R.V., D.J. O’Connor, and D.M. DiTorro. 1971. Modeling of the nitrogen and algal cycles in estuaries. Proc. 5th International Water Pollution Research Conference. Pergamon Press.Google Scholar
  100. 100.
    Thomas, W.H., E.H. Renger, and A.N. Dodson. 1971. Near-surface organic nitrogen in the eastern tropical Pacific Ocean. Deep-Sea Res. 18: 65–71.Google Scholar
  101. 101.
    Tilman, D. 1977. Resource competition between planktonic algae: an experimental and theoretical study. Ecology 58: 338–348.CrossRefGoogle Scholar
  102. 102.
    Topinka, J. 1978. Nitrogen uptake by Fucus spiralis (Phaeophyceae) J. Phycol. 14: 241–247.CrossRefGoogle Scholar
  103. 103.
    Turpin, D.H. and P.J. Harrison. 1979. Limiting nutrient patchiness and its role in phytoplankton ecology. J. Exp. Mar. Biol. Ecol. 39: 151–166.CrossRefGoogle Scholar
  104. 104.
    Valiela, I. and J.M. Teal. 1974. Nutrient limitation in salt marsh vegetation, p. 547–563. In R.J. Reimold and W.H. Queen (eds.), Ecology of halophytes. Academic.Google Scholar
  105. 105.
    Valiela, I., J.M. Teal, and W.G. Deuser. 1978. The nature of growth forms in the salt marsh grass Spartina alterniflora. Amer. Natur. 112: 461–470.CrossRefGoogle Scholar
  106. 106.
    Venrick, E.L., J.R. Beers, and J.F. Heinbokel. 1977. Possible consequences of containing microplankton for physiological rate measurements. J. Exp. Mar. Biol. Ecol. 26: 55–76.CrossRefGoogle Scholar
  107. 107.
    Walsh, J.J. and R.C. Dugdale. 1971. A simulation model of the nitrogen flow in the Peruvian upwelling system. Inv. Pesq. 35: 309–330.Google Scholar
  108. 108.
    Wheeler, P.A., B.B. North, and G.C. Stephens. 1974. Amino acid uptake by marine phytoplankters. Limnol. Oceanogr. 19: 249–259.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1981

Authors and Affiliations

  • James J. McCarthy
    • 1
  1. 1.Museum of Comparative ZoologyHarvard UniversityCambridgeUSA

Personalised recommendations