Polysensory “Association” Areas of the Cerebral Cortex

Organization of Acoustic Input in the Cat
  • D. R. F. Irvine
  • D. P. Phillips
Part of the Cortical Sensory Organization book series (CSO, volume 3)


The multiple representations of the cochlea on the cat’s ectosylvian cortex have been described by other contributors to this volume (see Imig et al., Merzenich, Colwell and Andersen, chapters 1 and 2). As Woolsey’s (174) classical diagram of the cortical auditory areas (Fig.5.1A) indicates, however, acoustic input is not restricted to these specific projection fields. In unanesthetized (18, 35, 38, 51, 56, 57, 121, 122, 139, 171) and chlorase-anesthetized (2, 21, 33, 36, 38, 49, 51, 52, 87, 139, 141, 147, 159, 160, 162, 171) cats, responses to auditory stimulation are also seen in a number of other discrete areas of the cerebral cortex. Detailed mapping of the identified of click-evoked responses (34, 36, 159, 160) has identified three major regions of this kind (designated as “associated” areas in Fig. 5.1B). One of these areas is situated on the medial suprasylvian gyrus (MSA), and is sometimes described as consisting of two discrete (anterior and posterior) foci. A second area is situated on the anterior lateral gyrus (ALA), and a third on pericruciate “sensimotor” cortex (PCA). It should be emphasized that these areas have been defined physiologically and do not correspond directly with known architectonic fields; MSA and ALA appear to span continguous parts of (at least) areas 5 and 7, while PCA corresponds approximately with area 6 (79).


Superior Colliculus Auditory Cortex Inferior Colliculus Squirrel Monkey Association Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, M., and Goldstein, M. H., Jr. Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J. Neurophysiol., 33: 172–187, 1970.PubMedGoogle Scholar
  2. 2.
    Adrian, H. D., Goldberg, J. M., and Brugge, J. F. Auditory evoked cortical potentials after lesions of brachium of inferior colliculus. J. Neurophysiol., 29: 456–466, 1966.PubMedGoogle Scholar
  3. 3.
    Aitkin, L. M. Medial geniculate body of the cat: responses to tonal stimuli of neurons in medial division. J. Neurophysiol., 36: 275–283, 1973.PubMedGoogle Scholar
  4. 4.
    Aitkin, L. M. Tonotopic organization at higher levels of the auditory pathway. In: International Review of Neurophysiology, Vol. 10. Neurophysiology II, edited by R. Porter. Baltimore: University Park Press, 1976, pp. 249–279.Google Scholar
  5. 5.
    Aitkin, L. M., Dickhaus, H., Schult, W., and Zimmermann, M. External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J. Neurophysiol., 41: 837–847, 1978.PubMedGoogle Scholar
  6. 6.
    Aitkin, L. M., and Webster, W. R. Medial geniculate body of the cat: Organization and responses to tonal stimuli of neurons in ventral division. J. Neurophysiol., 35: 365–380, 1972.PubMedGoogle Scholar
  7. 7.
    Aitkin, L. M., Webster, W. R., Veale, J. L., and Crosby, D. C. Inferior colliculus. I. Comparison of response properties of neurons in central, pericentral, and external nuclei of adult cat. J. Neurophysiol., 38: 1196–1207, 1975.PubMedGoogle Scholar
  8. 8.
    Albe-Fessard, D., and Fessard, A. Thalamic integrations and their consequences at the telencephalic level. Prog. Brain Res., 1: 115–148, 1963.CrossRefGoogle Scholar
  9. 9.
    Albe-Fessard, D., Levante, A., and Rokyta, R. Cortical projections of cat medial thalamic cells. Int. J. Neurosci., 1: 327–338, 1971.PubMedCrossRefGoogle Scholar
  10. 10.
    Albe-Fessard, D., and Mallart, A. Existence de réponses d’origines visuelle et auditive dans le centre médian du thalamus du chat anesthésié au chloralose. Compt. Rend. Acad. Sci., Paris, 251: 1040–1042, 1960.Google Scholar
  11. 11.
    Albe-Fessard, D., and Rougeul, A. Activités dorigine somesthésique évoquées sur le cortex non-spécifique du chat anesthésié au chloralose: Rôle du centre médian du thalamus. Electroencephalog. Clin. Neurophysiol., 10: 131–152, 1958.CrossRefGoogle Scholar
  12. 12.
    Altman, J., and Carpenter, M. B. Fiber projections of the superior colliculus in the cat. J. Comp. Neurol., 116: 157–178, 1961.PubMedCrossRefGoogle Scholar
  13. 13.
    Amassian, V. E., and Devito, R. Unit activity in reticular formation and nearby structures. J. Neurophysiol., 17: 575–603, 1954.PubMedGoogle Scholar
  14. 14.
    Andersen, R. A. Patterns of connectivity of the auditory forebrain of the cat. PhD Thesis, Uiversity of California, San Francisco, 1979.Google Scholar
  15. 15.
    Andersen, R. A., Knight, P. L., and Merzenich, M. M. The thalamocortical and corticothalamic connections of A I, A II, and the anterior auditory field (AAF) in the cat: Evidence for two largely segregated systems of connections. J. Comp. Neurol., 194: 649–662, 1980.PubMedCrossRefGoogle Scholar
  16. 16.
    Araki, T., and Endo, K. Short latency EPSPs of pyramidal tract cells evoked by stimulation of the centrum medianum-parafascicular complex and the nucleus ventralis anterior of the thalamus. Brain Res., 113: 405–410, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Bell, E., Sierra, G., Buendio, N., and Segundo, J. P. Sensory properties of neurons in the mesencephalic reticular formation. J. Neurophysiol., 27: 961–987, 1964.PubMedGoogle Scholar
  18. 18.
    Bental, E., and Bihari, B. Evoked activity of single neurons in sensory association cortex of the cat. J. Neurophysiol., 26: 207–214, 1963.PubMedGoogle Scholar
  19. 19.
    Berkley, K. Response properties of cells in ventrobasal and posterior group nuclei of the cat. J. Neurophysiol., 39: 940–952, 1973.Google Scholar
  20. 20.
    Berson, D. M., and Graybiel, A. M. Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connections. Brain Res., 147: 139–148, 1978.PubMedCrossRefGoogle Scholar
  21. 21.
    Bettinger, L. A., Davis, J. L., Meikle, M. B., Birch, H., Kopp, R., Smith, H. E., and Thompson, R. F. “Novelty” cells in association cortex of cat. Psychon. Sci., 9: 421–422, 1967.Google Scholar
  22. 22.
    Bignall, K. E. Effects of subcortical ablations on polysensory cortical responses and interactions in the cat. Exptl. Neurol., 18: 56–67, 1976.CrossRefGoogle Scholar
  23. 23.
    Bignall, K. E. Bilateral temperofrontal projections in the squirrel monkey: origin, distribution and pathways. Brain Res., 13: 319–327, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    Bignall, K. E. Auditory input to frontal polysensory cortex of the squirrel monkey: possible pathways. Brain Res., 19: 77–86, 1970.PubMedCrossRefGoogle Scholar
  25. 25.
    Bignall, K. E., and Imbert, M. Polysensory and corticocortical projections to fronted lobe of squirrel and rhesus monkeys. Electroencephalog. Clin. Neurophysiol., 26: 206–215, 1969.CrossRefGoogle Scholar
  26. 26.
    Bignal, K. E, and Singer, P. Auditory, somatic and visual input to association and motor cortex of the squirrel monkey. Exptl. Neurol., 18: 300–312, 1967.CrossRefGoogle Scholar
  27. 27.
    Blum, P. S., Abraham, L. D., and Gilman, S. Vestibular, auditory and somatic input to the posterior thalamus of the cat. Exptl. Brain Res. 34: 1–9, 1979.CrossRefGoogle Scholar
  28. 28.
    Boudreau, J. C. and Tsuchitani, C. Binaural interaction in the cat superior olive S-segment. J. Neurophysiol., 31: 442–454, 1968.PubMedGoogle Scholar
  29. 29.
    Boudreau, J. C., and Tsuchitani, C. Cat superior olive S-segment cell discharge to tonal stimulation. In: Contributions to Sensory Physiology, edited by W. D. NEFF. New York: Academic Press, 4: 143–213, 1970.Google Scholar
  30. 30.
    Bowsher, D. Some afferent and efferent connections of the parafascicular-center median complex. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia University Press, 1966, pp. 99–108.Google Scholar
  31. 31.
    Bowsher, D. Diencephalic projections from the midbrain reticular formation. Brain Res., 95: 211–220, 1975.PubMedCrossRefGoogle Scholar
  32. 32.
    Bowsher, D., Mallart, A., Petit, D., and Albe-Fessard, D. A bulbar relay to the centre median. J. Neurophysiol., 31: 288–300, 1968.PubMedGoogle Scholar
  33. 33.
    Bruner, J. Afférences visuelles non-primaires vers le cortex cérébral chez le chat. J. Physiol., Paris, 57, Suppl 12: 1–129, 1965.CrossRefGoogle Scholar
  34. 34.
    Buser, P., and Bignalll, K. E. Nonprimary sensory projections on the cat neocortex. Int. Rev. Neurobiol., 10: 111–165, 1967.PubMedCrossRefGoogle Scholar
  35. 35.
    Buser, P., and Borenstein, P. Réponses somesthésiques, visuelles et auditives, recueillies au niveau du cortex “associatif” suprasylvien chez le chat curarisé non anesthésié. Electro-encephalog. Clin. Neurophysiol., 11: 285–304, 1959.CrossRefGoogle Scholar
  36. 36.
    Buser, P., Borenstein, P., and Bruner, J. Étude des systèmes “associatifs” visuels et auditifs chez le chat anesthésié au chloralose. Electroencephalog. Clin. Neurophysiol., 11: 305–324, 1959.CrossRefGoogle Scholar
  37. 37.
    Buser, P., and Bruner, J. Réponses visuelles et acoustiques au niveau du complexe ventromédian postérieur du thalamus chez le chat. Compt. Rend Acad. Sci., Paris. 251: 1238–1240, 1960.Google Scholar
  38. 38.
    Buser, P., Andimbert, M. Sensory projections to the motor cortex in cats: a microelectrode study. In: Sensory Communication, edited by W. A. Rosenblith. Cambridge: MIT Press, 1961, pp. 607–626.Google Scholar
  39. 39.
    Calma, I. The activity of the posterior group of thalamic nuclei in the cat. J. Physiol., London, 180: 350–370, 1965.Google Scholar
  40. 40.
    Cluver, P. F. DE V., and Campos-Ortega, J. A. The cortical projection of the pulvinar in the cat. J. Comp. Neurol., 137: 295–308, 1969.CrossRefGoogle Scholar
  41. 41.
    Cranford, J. L. Polysensory cortex lesions and auditory frequency discrimination in the cat. Brain Res., 148: 499–503, 1978.PubMedCrossRefGoogle Scholar
  42. 42.
    Critchley, M. The Parietal Lobes. London: Arnold, 1953.Google Scholar
  43. 43.
    Curry, M. J. The effects of stimulating somatic sensory cortex on single neurons in the posterior group (PO) of the cat. Brain Res., 44: 463–481, 1972.PubMedCrossRefGoogle Scholar
  44. 44.
    Diamond, I. T., Jones, E. G., and Powell, T. P. S. The association connections of the auditory cortex of the cat. Brain Res., 11: 560–579, 1968.PubMedCrossRefGoogle Scholar
  45. 45.
    Diamond, I. T., Jones, E. G., and Powell, T. P. S. The projection of the auditory cortex upon the diencephalon and brainstem in the cat. Brain Res., 15: 305–340, 1969.PubMedCrossRefGoogle Scholar
  46. 46.
    Dila, C. J . A midbrain projection to the centre median nucleus of the thalamus. A neurophysiological study. Brain Res., 25: 63–74, 1971.PubMedCrossRefGoogle Scholar
  47. 47.
    Dow, B. M., and Dubner, R. Visual receptive fields and responses to movement in an association area of cat cerebral cortex. J. Neurophysiol., 32: 773–784, 1969.PubMedGoogle Scholar
  48. 48.
    Dow, B. M., and Dubner, R. Single unit responses to moving visual stimuli in middle suprasylvian gyrus of the cat. J. Neurophysiol., 34: 47–55, 1971.PubMedGoogle Scholar
  49. 49.
    Dubner, R. Single cell analysis of sensory interaction in anterior lateral and suprasylvian gyri of the cat cerebral cortex. Exptl. Neurol., 15: 255–273, 1966.CrossRefGoogle Scholar
  50. 50.
    Dubner, R., and Brown, F. J. Responses of cells to restricted visual stimuli in an association area of cat cerebral cortex. Exptl. Neurol., 20: 70–86, 1968.CrossRefGoogle Scholar
  51. 51.
    Dubner, R., and Rutledge, L. T. Recording and anaylsis of converging input upon neurons in cat association cortex. J. Neurophysiol., 27: 620–634, 1964.PubMedGoogle Scholar
  52. 52.
    Dubner, R., and Rutledge, L. T. Intracellular recording of the convergence of input upon neurons in cat association cortex. Exptl. Neurol., 12: 349–369, 1965.CrossRefGoogle Scholar
  53. 53.
    Edwards, S. B., Ginsburgh, C. L., Henkel, C. K., and Stein, B. E. Sources of subcortical projections to the superior colliculus in the cat. J. Comp. Neurol., 184: 309–329, 1979.PubMedCrossRefGoogle Scholar
  54. 54.
    Edwards, S. B., and De Olmos, J. S. Autoradiographic studies of the projections of the midbrain reticular formation: Ascending projections of nucleus cuneiformis. J. Comp. Neurol., 165: 417–432, 1976.PubMedCrossRefGoogle Scholar
  55. 55.
    Endo, K., Araki, T., and Ito, K. Short latency EPSPs and incrementing PSPs of pyramided tract cells evoked by stimulation of the nucleus centralis lateralis of the thalamus. Brain Res., 132: 541–546, 1977.PubMedCrossRefGoogle Scholar
  56. 56.
    Engel, J., JR. Intracellular study of auditory evoked activity in pericruciate cortex of the awake, non-paralyzed cat. Brain Res., 85: 69–73, 1975.PubMedCrossRefGoogle Scholar
  57. 57.
    Engel, J. JR., and Woody, C. D. Effects of character and significance of stimulus on unit activity at coronal-pericruciate cortex of cat during performance of conditioned motor response. J. Neurophysiol., 35: 220–229, 1972.PubMedGoogle Scholar
  58. 58.
    Erulkar, S. D. Comparative aspects of spatial localization of sound. Physiol. Rev., 52: 237–360, 1972.PubMedGoogle Scholar
  59. 59.
    Evans, E. F. Neural processes for the detection of acoustic patterns and for sound localization. In: The Neurosciences-Third Study Program, edited by F. O. Schmittand, F. G. Worden. Cambridge: MIT Press, 1974, pp. 131–145.Google Scholar
  60. 60.
    Evans, E. F. and Whitfield, I. C. Classification of unit responses in the auditory cortex of the unanesthetized, unrestrained cat. J. Physiol., London, 181: 476–493, 164.Google Scholar
  61. 61.
    Forbes, B. F., and Moskowitz, N. Cortico-cortical connections of the superior temporal gyrus in the squirrel monkey. Brain Res., 136: 547–552, 1977.PubMedCrossRefGoogle Scholar
  62. 62.
    Fuller, J. H. Brain stem reticular units: some properties of the course and origin of the ascending trajectory. Brain Res., 83: 349–367, 1975.PubMedCrossRefGoogle Scholar
  63. 63.
    Geisler, C. D., Rhode, W. S., and Hazelton, D. W. Responses of inferior colliculus neurons in the cat to binaural acoustic stimuli having wide band spectra. J. Neurophysiol., 32: 960–974, 1969.PubMedGoogle Scholar
  64. 64.
    Giuliano, A., Spreafico, R., Broggi, G., Giovannini, P., and Franceschetti, S. Topographic distribution of visual and somesthesic unitary responses in the Pul-LP complex of the cat. Neurosci. Lett., 4: 135–143, 1977.PubMedCrossRefGoogle Scholar
  65. 65.
    Godfraind, J.-M., Meulders, M., and Veraart, C. Visual properties of neurons in pulvinar, nucleus lateralis posterior and nucleus suprageniculatus thalami in the cat. I. Qualitative investigation. Brain Res., 44: 503–526, 1972.PubMedCrossRefGoogle Scholar
  66. 66.
    Goldberg, J. M., and Brown, P. B. Functional organization of the dog superior olivary complex: An anatomical and electrophysiological study. J. Neurophysiol., 31: 639–656, 1968.PubMedGoogle Scholar
  67. 67.
    Goldberg, J. M., and Brown, P. B. Responses of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol., 32: 613–636, 1969.PubMedGoogle Scholar
  68. 68.
    Goldstein, M. H., JR., Abeles, M., Daly, R. L., and Mcintosh, J. Functional architecture in cat primary auditory cortex: tonotopic organization. J. Neurophysiol., 33: 188–197, 1960.Google Scholar
  69. 69.
    Gordon, B. Receptive fields in deep layers of cat superior colliculus. J. Neurophysiol., 36: 157–178, 1973.PubMedGoogle Scholar
  70. 70.
    Graham, J. An autoradiographic study of the efferent connections of the superior colliculus in the cat. J. Comp. Neurol., 173: 629–654, 1977.PubMedCrossRefGoogle Scholar
  71. 71.
    Graybiel, A. M. Some fiber pathways related to the posterior thalamic region in the cat. Brain, Behav. Evol., 6: 363–393, 1972.CrossRefGoogle Scholar
  72. 72.
    Graybiel, A. M. Some ascending connections of the pulvinar and lateralis posterior of the thalamus in the cat. Brain Res., 44: 99–125, 1972.PubMedCrossRefGoogle Scholar
  73. 73.
    Graybiel, A. M. The thalamo-cortical projection of the so-called posterior nuclear group: a study with anterograde degeneration methods in the cat. Brain Res., 49: 229–244, 1973.PubMedCrossRefGoogle Scholar
  74. 74.
    Graybiel, A. M. Studies on the anatomical organization of posterior association cortex. In: The Neurosciences-Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, Mass.: M.I.T. Press, 1974, pp. 205–214.Google Scholar
  75. 75.
    Graybiel, A. M. Direct and indirect preoculomotor pathways of the brainstem: An autoradiographic study of the pontine reticular formation in the cat. J. Comp. Neurol., 175: 37–78, 1977.PubMedCrossRefGoogle Scholar
  76. 76.
    Groves, P. M., Miller, S. W., Parker, M. V., and Rebee, G. V. Organization by sensory modality in the reticular formation of the rat. Brain Res., 54: 207–224, 1973.PubMedCrossRefGoogle Scholar
  77. 77.
    Harding, G. W., Stogsdill, R. M., and Towe, A. L. Relative effects of pentobarbital and chloralose on the responsiveness of neurons in sensorimotor cerebral cortex of the domestic cat. Neuroscience, 4: 369–378, 1979.PubMedCrossRefGoogle Scholar
  78. 78.
    Heath, C. J., and Jones, E. G. An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat. J. Comp. Neurol., 141: 397–426, 1971.PubMedCrossRefGoogle Scholar
  79. 79.
    Heath, C. J. and Jones, E. G. The anatomical organization of the suprasylvian gyrus of the cat. Ergeh. Anat. Entwicklungsgesch 45: 1–64, 1971.Google Scholar
  80. 80.
    Heilman, K. M., Pandya, D. N., and Geschwind, N. Trimodal inattention following parietal lobe ablations. Trans. Am. Neurol Assoc., 95: 259–261, 1970.PubMedGoogle Scholar
  81. 81.
    Hernändez-Peon, R., and Hagbarth, K. E. Interaction between afferent and cortically induced reticular responses. J. Neurophysiol., 18: 44–55, 1955.PubMedGoogle Scholar
  82. 82.
    Hind, J. E., Rose, J. E., Davies, P. W., Woolsey, C. N., Benjamin, R. M., Welker, W. I., and Thompson, R. F. Unit activity in the auditory cortex. In: Neural Mechanisms of the Auditory and Vestibular Systems, edited by G. L. Rasmussen and W. F. Windle. Springfield, IL: Thomas, 1960, pp. 201–210.Google Scholar
  83. 83.
    Hotta, T., and Kameda, K. Interactions between somatic and visual or auditory responses in the thalamus of the cat. Exptl. Neurol., 8: 1–13, 1963.CrossRefGoogle Scholar
  84. 84.
    Huang, C. C., and Lindsley, D. B. Polysensory responses and sensory interaction in pulvinar related postero-lateral thalamic nuclei in cat. Electroenceph. Clin. Neurophysiol., 34: 265–280, 1973.PubMedCrossRefGoogle Scholar
  85. 85.
    Imig, T. J., and Reale, R. A. Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. J. Comp. Neurol., 192: 293–332, 1980.PubMedCrossRefGoogle Scholar
  86. 86.
    Irvine, D. R. F. Acoustic properties of neurons in posteromedial thalamus of cat. J. Neurophysiol, 43: 395–408, 1980.PubMedGoogle Scholar
  87. 87.
    Irvine, D. R. F., and Huebner, H. Acoustic response characteristics of neurons in non-specific areas of cat cerebral cortex. J. Neurophysiol, 42: 107–122, 1979.PubMedGoogle Scholar
  88. 88.
    Itoh, K., and Mizuno, N. Direct projections from the mesodiencephalic areas to the pericruciate cortex in the cat: an experimental study with the horseradish peroxidase method. Brain Res., 116: 492–497, 1976.PubMedCrossRefGoogle Scholar
  89. 89.
    Itoh, K., and Mizuno, N. Topographical arrangement of thalamo-cortical neurons in the centrolateral nucleus of the cat, with special references to a spino-thalamo-motor cortical path through the CL. Exptl. Brain Res. 30: 471–480, 1977.Google Scholar
  90. 90.
    Jackson, G., and Irvine, D. R. F. Acoustic properties of neurons in cat mesencephalic reticular formation. Proc. Aust. Physiol. Pharmacol. Soc., 9: 177P, 1978.Google Scholar
  91. 91.
    Jasper, H. H., and Ajmone-Marsan, C. A Stereotaxic Atlas of the Diencephalon of the Cat. Ottawa: National Research Council of Canada, 1954.Google Scholar
  92. 92.
    Jones, E. G. Some aspects of the organization of the thalamic reticular complex. J. Comp. Neurol., 162: 285–308, 1975.PubMedCrossRefGoogle Scholar
  93. 93.
    Jones, E. G., and Leavitt, R. Y. Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J. Comp. Neurol., 154: 349–378, 1974.PubMedCrossRefGoogle Scholar
  94. 94.
    Jones, E. G., and Powell, T. P. S. An analysis of the posterior group of thalamic nuclei on the basis of its afferent connections. J. Comp. Neurol., 143: 185–216, 1971.PubMedCrossRefGoogle Scholar
  95. 95.
    Kawai, Y. Effect of destruction of the specific and nonspecific thalamic nuclei on the sensory responses in the cortical association area of the cat. Psychiatria Neurol. Jap., 73: 584–615, 1971.Google Scholar
  96. 96.
    Kawamura, K. Corticocortical fiber connections of the cat cerebrum. I. The temporal region. Brain Res., 51: 1–21, 1973.PubMedCrossRefGoogle Scholar
  97. 97.
    Kawamura, K., Brodal, A., and Hoddevik, G. The projection of the superior colliculus onto the reticular formation of the brain stem. An experimental study in the cat. Exptl. Brain Res., 19: 1–19, 1974.CrossRefGoogle Scholar
  98. 98.
    Kawamura, K., and Hashikawa, T. Cell bodies of origin of reticular projections from the superior colliculus in the cat: An experimental study with the use of horseradish peroxidase as a tracer. J. Comp. Neurol., 182: 1–16, 1978.PubMedCrossRefGoogle Scholar
  99. 99.
    Kennedy, H., and Baleydier, C. Direct projections from thalamic intralaminar nuclei to extra-striate visual cortex in the cat traced with horseradish peroxidase. Exptl. Brain Res., 28: 133–139, 1977.CrossRefGoogle Scholar
  100. 100.
    Kiang, N. Y.-S. Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. M.I.T. Monograph No. 35. Cambridge: M.I.T. Press, 1965.Google Scholar
  101. 101.
    Kitsikis, A., and Steriade, M. Thalamic, callosal and reticular converging inputs to parietal association cortex in cat. Brain Res., 93: 516–524, 1975.PubMedCrossRefGoogle Scholar
  102. 102.
    Knight, P. L. Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res., 130: 447–467, 1977.PubMedCrossRefGoogle Scholar
  103. 103.
    Knudsen, E. I., and Konishi, M. Space and frequency are represented separately in auditory midbrain of the owl. J. Neurophysiol., 41: 870–884, 1978.PubMedGoogle Scholar
  104. 104.
    Kreindler, A., Crighel, E., and Marinchescu, C. Integrative activity of the thalamic pulvinar-lateralis posterior complex and interrelations with the neocortex. Exptl. Neurol, 22: 423–435, 1968.CrossRefGoogle Scholar
  105. 105.
    Liu, Y.-M., and Shen, E. Pathways mediating the electrical response of the motor center to brief auditory and visual stimuli in cat. Acta Physiol. Sin., 22: 104–118, 1958.Google Scholar
  106. 106.
    Love, J. A., and Scott, J. W. Some response characteristics of cells of the magnocellular division of the medial geniculate body of the cat. Can. J. Physiol. Pharmacol., 47: 881–888, 1969.PubMedCrossRefGoogle Scholar
  107. 107.
    Lynch, J. C., Mountcastle, V. B., Talbot, W. H., and Yin, T. C. T. Parietal lobe mechanisms for directed visual attention. J. Neurophysiol., 40: 362–389, 1977.PubMedGoogle Scholar
  108. 108.
    Macchi, G., Bentivoglio, M., D’atena, C., Rossini, P., and Tempesta, E. The cortical projections of the thalamic intralaminar nuclei restudied by means of the HRP retrograde axonal transport. Neurosci. Lett., 4: 121–126, 1977.PubMedCrossRefGoogle Scholar
  109. 109.
    Macchi, G., Quattrini, A., Chinzari, P., Marchesi, G., and Capocchi, G. Quantitative data on cell loss and cellullar atrophy of intralaminar nuclei following cortical and subcortical lesions. Brain Res., 89: 43–59, 1975.PubMedCrossRefGoogle Scholar
  110. 110.
    Mancia, M., Mechelse, K., and Mollica, A. Microelectrode recording from midbrain reticular formation in the decerebrate cat. Arch. Ital. Biol., 95: 110–119, 1957.Google Scholar
  111. 111.
    Massion, J., and Meulders, M. Les potentiels évoqués visuels et auditifs de centre médian et leurs modification après décortication. Arch. Intern. Physiol. Biochim., 69: 26–29, 1961.CrossRefGoogle Scholar
  112. 112.
    Merzenich, M. M., Knight, P. L., Androth, G. L. Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol., 38: 231–249, 1975.PubMedGoogle Scholar
  113. 113.
    Merzenich, M. M., and Reid, M. D. Representation of the cochlea within the inferior colliculus of the cat. Brain Res., 77: 397–415, 1974.PubMedCrossRefGoogle Scholar
  114. 114.
    Mizuno, N., Konishi, A., Sato, M., Kawaguchi, S., Yamamoto, T., Kawamura, S., and Yamawaki, M. Thalamic afferents to the rostral portions of the middle suprasylvian gyrus in the cat. Exptl. Neurol., 48: 79–87, 1975.CrossRefGoogle Scholar
  115. 115.
    Moore, R. Y., and Goldberg, J. M. Ascending projections of the inferior colliculus in the cat. J. Comp. Neurol., 121: 109–136, 1963.CrossRefGoogle Scholar
  116. 116.
    Mountcastle, V. B., Lynch, J. C., Georgopolous, A., Sakata, H., and Acuna, C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol, 38: 871–908, 1975.PubMedGoogle Scholar
  117. 117.
    Murray, M. Degeneration of some intralaminar thalamic nuclei after cortical removals in the cat. J. Comp. Neurol, 127: 341–367, 1966.PubMedCrossRefGoogle Scholar
  118. 118.
    Nauta, W., and Kuypers, H. Some ascending pathways in the brain stem reticular formation. In: Reticular Formation of the Brain, edited by H. Jasper, R. Proctor, R. Knighton, W. Noshay, and R. Costello. London: Churchill, 1958, pp. 3–30.Google Scholar
  119. 119.
    Nelson, C. N., and Bignalll, K. E. Interactions of sensory and nonspecific thalamic inputs to cortical polysensoiy units in the squirrel monkey. Exptl. Neurol, 40: 189–206, 1973.CrossRefGoogle Scholar
  120. 120.
    Newman, J. D., and Lindsley, D. F. Single unit analysis of auditory processing in squirrel monkey frontal cortex. Exptl. Brain. Res., 25: 169–181, 1976.CrossRefGoogle Scholar
  121. 121.
    O’brien, J. H., and Fox, S. S. Single cell activity in cat motor cortex. II Functional characteristics of the cell related to conditioning changes. J. Neurophysiol., 32: 285–296, 1969.PubMedGoogle Scholar
  122. 122.
    O’brien, J. H., and Rosenblum, S. M. Influence of thalamic cooling on sensory responses in association cortex. Brain Res. Bull., 4: 91–98, 1979.PubMedCrossRefGoogle Scholar
  123. 123.
    Oxbury, J. M., Campbell, D. C., and Oxbury, S. M. Unilateral spatial neglect and impairments of spatial analysis and visual perception. Brain, 97: 551–564, 1974.PubMedCrossRefGoogle Scholar
  124. 124.
    Palmer, L. A., Rosenquist, A. C., Andtusa, R. J. Theretinotopic organization of lateral suprasylvian visual areas in cat. J. Comp. Neurol., 177: 237–256, 1978.PubMedCrossRefGoogle Scholar
  125. 125.
    Paula-Barbosa, M. M., Feyo, P. B., and Sousa-Pinto, A. The association connexions of the suprasylvian fringe (SF) and other areas of the cat auditory cortex. Exp. Brain Res., 23: 535–554, 1975.PubMedCrossRefGoogle Scholar
  126. 126.
    Phillips, D. P., and Irvine, D. R. F. Acoustic input to single neurons in pulvinar-posterior complex of cat thalamus. J. Neurophysiol, 42: 123–136, 1979.PubMedGoogle Scholar
  127. 127.
    Phillips, D. P., and Irvine, D. R. F. Responses of single neurons in physiologically-defined primary auditory cortex (AI) of the cat: Frequency tuning and responses to intensity. J. Neurophysiol, 45: 48–58, 1981.PubMedGoogle Scholar
  128. 128.
    Phillips, D. S., Denney, D. D., Robertson, R. T., Hicks, L. H., and Thompson, R. F. Cortical projections of ascending nonspecific systems. Physiol. Behav., 8: 269–277, 1972.PubMedCrossRefGoogle Scholar
  129. 129.
    Poggio, G. F., and Mountcastle, V. B. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Johns Hopkins Med. J., 106: 266–316, 1960.Google Scholar
  130. 130.
    Powell, T. P. S., and Cowan, W. M. The interpretation of the de-generative changes in the intralaminar nuclei of the thalamus. J. Neurol. Neurosurg. Psychiat., 30: 140–153, 1967.PubMedCrossRefGoogle Scholar
  131. 131.
    Powell, E. W., and Hatton, J. B. Projections of the inferior colliculus in cat. J. Comp. Neurol, 136: 183–192, 1969.PubMedCrossRefGoogle Scholar
  132. 132.
    Rasminsky, M., Mauro, A. J., and Albe-Fessard, D. Projections of medial thalamic nuclei to putamen and cerebral frontal cortex in the cat, Brain Res., 61: 69–77, 1973.PubMedCrossRefGoogle Scholar
  133. 133.
    Reale, R. A., and Imig, T. J. Tonotopic organization in auditory cortex of the cat. J. Comp. Neurol, 192: 265–292, 1980.PubMedCrossRefGoogle Scholar
  134. 134.
    Rinvik, E. The corticothalamic projection from the gyrus proreus and the medial wall of the rostral hemisphere in the cat. An experimental study with silver impregnation methods. Exptl. Brain Res., 5: 129–152, 1968.Google Scholar
  135. 135.
    Rinvik, E. Organization of thalamic connections from motor and somotosensory cortical areas in the cat. In: Corticothalamic Projections and Sensorimotor Activities, edited by T. Frigyesi, E. Rinvik and M. D. Yahr, New York: Raven, 1972, pp. 57–90.Google Scholar
  136. 136.
    Rioch, D. McK. Studies on the diencephalon of carnnivora. I. The nuclear configuration of the thalamus, epithalamus, and hypothalamus of the dog and cat, J. Comp. Neurol, 49: 1–119, 1929.CrossRefGoogle Scholar
  137. 137.
    Robertson, R. T. Thalamic projections to visually responsive regions of parietal cortex. Brain Res. Bull, 1: 459–469, 1976.PubMedCrossRefGoogle Scholar
  138. 138.
    Robertson, R. T. Thalamic projections to areas 5 and 7 of parietal cortex in the cat. Soc. Neurosci. Abstr., 4: 79, 1978.Google Scholar
  139. 139.
    Robertson, R. T., Mayers, K. S., Teyler, T. J. Bettinger, L. A., Birch, H., Davis, J. L., Phillips, D. S., and Thompson, R. F. Unit activity in posterior association cortex of cat. J. Neurophysiol, 38: 780–793, 1975.PubMedGoogle Scholar
  140. 140.
    Robertson, R. T., Lynch, G. S., and Thompson, R. F. Diencephalic distributions of ascending reticular systems. Brain Res., 55: 309–322, 1973.PubMedCrossRefGoogle Scholar
  141. 141.
    Robertson, R. T., and Thompson, R. F. Effects of subcortical ab-lations on cortical association responses in the cat. Physiol Behav., 10: 245–252, 1973.PubMedCrossRefGoogle Scholar
  142. 142.
    Robinson, D. L., Goldberg, M. E., and Stanton, G. B. Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J. Neurophysiol., 41: 910–932, 1978.PubMedGoogle Scholar
  143. 143.
    Rose, J. E., Greenwood, D. D., Goldberg, J. M., and Hind, J. E. Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike counts to tone intensity, and firing patterns of single elements. J. Neurophysiol, 26: 294–320, 1963.Google Scholar
  144. 144.
    Rose, J. E. Gross, N. B., Geisler, C. D., and Hind, J. E. Some neural mechanisms in the inferior colliculus of the cat which may be relevant to the localization of a sound source. J. Neurophysiol, 29: 288–314, 1966.PubMedGoogle Scholar
  145. 145.
    Rose, J. E., and Woolsey, C. N. Cortical connections and functional organization of the thalamic auditory system of the cat. In: The Biological and Biochemical Bases of Behavior, edited by H. F. Harlow and C. N. Woolsey. Madison: Univ. of Wisconsin Press, 1958, pp. 127–150.Google Scholar
  146. 146.
    Rutledge, L. T., and Duncan, J. A. Extracellular recording of converging input on cortical neurons using a flexible microelectrode. Nature, 210: 737–739, 1966.PubMedCrossRefGoogle Scholar
  147. 147.
    Schechter, P. B., and Murphy, E. H. Response characteristics of single cells in squirrel monkey frontal cortex. Brain Res., 96: 66–70, 1975.PubMedCrossRefGoogle Scholar
  148. 148.
    Scheibel, M. E., and Scheibel, A. B. Patterns of organization in specific and nonspecific thalamic fields. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia University Press, 1966, pp. 13–46.Google Scholar
  149. 149.
    Scheibel, M. E., and Scheibel, A. B. The organization of the nucleus reticularis thalami: a Golgi study. Brain Res., 1: 43–62, 1966.PubMedCrossRefGoogle Scholar
  150. 150.
    Scheibel, M. E., and Scheibel, A. B. Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res., 6: 60–94, 1967.PubMedCrossRefGoogle Scholar
  151. 151.
    Scheibel, M. E., and Scheibel, A. B. Input-output relations of the thalamic nonspecific system. Brain, Behav. Evol, 6: 332–358, 1972.Google Scholar
  152. 152.
    Scheibel, M. E., Scheibel, A. B., Mollica, A., and Moruzzi, G. Convergence and interaction of afferent impulses on single units of reticular formation. J. Neurophysiol, 18: 309–331, 1955.PubMedGoogle Scholar
  153. 153.
    Shimazono, Y., Torn, H., Endo, M., Ihara, S., Narukawa, H., and Matsuda, M. Convergence of thalamic and sensory afferent impulses to single neurons in the cortical association area of cats. Folia Psychiat. Neurol. Jap., 17: 144–155, 1963.PubMedGoogle Scholar
  154. 154.
    Slimp, J. C., and Towe, A. L. Characteristics of somatic receptive fields of neurons in postcruciate cerebral cortex in awake-restrained and two anesthetic conditions in the same cat. Soc. Neurosci. Abstr., 3: 492, 1977.Google Scholar
  155. 155.
    Stein, B. E., and Arigbede, M. O. Unimodal and multimodal response properties of neurons in the cat’s superior colliculus. Exptl. Neurol., 36: 179–196, 1972.CrossRefGoogle Scholar
  156. 156.
    Steriade, M., Diallo, A., Oakson, G., and Whiteguay, B. Some synaptic inputs and ascending projections of lateralis posterior thalamic neurons. Brain Res., 131: 39–53, 1977.PubMedCrossRefGoogle Scholar
  157. 157.
    Thompson, R. F. Thalamocortical organization of association re-sponses to auditory, tactile, and visual stimuli in the cat. Internat. Congr. Physiol. Sci., Leiden, 1962, p. 1057.Google Scholar
  158. 158.
    Thompson, R. F. Role of cortical association fields in auditory frequency discrimination. J. Comp. Physiol. Psychol., 57: 335–339, 1964.PubMedCrossRefGoogle Scholar
  159. 159.
    Thompson, R. F., Johnson, R. H., and Hoopes, J. J. Organization of auditory, somatic sensory and visual projections to association fields of cerebral cortex in the cat. J. Neurophysiol., 26: 343–364, 1963.PubMedGoogle Scholar
  160. 160.
    Thompson, R. F., and Sindberg, R. M. Auditory response fields in association and motor cortex of cat. J. Neurophysiol., 23: 87–105, 1960.PubMedGoogle Scholar
  161. 161.
    Thompson, R. F., and Smith, H. E. Effects of association area lesions on auditory frequency discrimination in cat. Psychon. Sci., 8: 123–124, 1967.CrossRefGoogle Scholar
  162. 162.
    Thompson, R. F., Smith, H. E., and Bliss, D. Auditory, somatic sensory, and visual response interactions and interrelations in association and primary cortical fields of the cat. J. Neurophysiol., 26: 365–378, 1963.PubMedGoogle Scholar
  163. 163.
    Totibadze, N. K., and Moniava, E. S. On the direct cortical connections of the nucleus centrum medianum thalami. J. Comp. Neurol, 137: 347–360, 1969.PubMedCrossRefGoogle Scholar
  164. 164.
    Tsuchitani, C. Functional organization of lateral cell groups of cat superior olivary complex. J. Neurophysiol., 40: 296–318, 1977.PubMedGoogle Scholar
  165. 165.
    Vedovato, M. Identification of afferent connections to cortical area 6aß of the cat by means of retrograde horseradish peroxidase transport. Neurosci. Lett., 9: 303–310, 1978.PubMedCrossRefGoogle Scholar
  166. 166.
    Veraart, C., Meulders, M., and Godfraind, M.-M. Visual properties of neurons in pulvinar, nucleus lateralis posterior and nucleus suprageniculatus thalami in the cat. II. Quantitative investigation. Brain Res., 44: 527–546, 1972.PubMedCrossRefGoogle Scholar
  167. 167.
    Webster, W. R. Central neural mechanisms of hearing. Proc. Aust. Physiol Pharmacol Soc., 8: 1–7, 1977.Google Scholar
  168. 168.
    Webster, W. R., and Aitkin, L. M. Central auditory processing. In: Handbook of Psychobiology, edited by M. Gazzaniga and C. Blakemore. New York: Academic, 1975, pp. 325–364.Google Scholar
  169. 169.
    Welch, K., and Stuteville, P. Experimental production of uni-lateral neglect in monkeys. Brain, 81: 341–347, 1958.PubMedCrossRefGoogle Scholar
  170. 170.
    Wepsic, J. G. Multimodal sensory activation of cells in the magno- cellular medial geniculate nucleus. Exptl. Neurol, 15: 299–318, 1966.CrossRefGoogle Scholar
  171. 171.
    Wester, K. G., Irvine, D. R. F., and THOMPSON, R. F. Acoustic tuning of single cells in middle suprasylvian cortex of cat. Brain Res., 76: 493–502, 1974.PubMedCrossRefGoogle Scholar
  172. 172.
    Wilson, M. E., and Cragg, B. G. Projections from the lateral geniculate nucleus in the cat and monkey, J. Anat., London, 101: 677–692, 1967.Google Scholar
  173. 173.
    Wise, L. Z., and Irvine, D. R. F. Auditory response properties of neurones in intermediate and deep layers of cat superior colliculus. Proc. Aust. Physiol Pharmacol Soc., 12: 18P, 1981.Google Scholar
  174. 174.
    Woolsey, C. N. Organization of cortical auditory system: a review and a synthesis. In: Neural Mechanisms of the Auditory and Vestibular Systems, edited by G. L. Rasmussen and W. F. Windle. Springfield, IL: Thomas, 1960, p. 165–180.Google Scholar

Copyright information

© The HUMANA Press Inc. 1982

Authors and Affiliations

  • D. R. F. Irvine
    • 1
  • D. P. Phillips
    • 1
  1. 1.Neuropsychology Laboratory, Department of PsychologyMonash UniversityClaytonAustralia

Personalised recommendations