Cortical and Subcortical Connections of Visual Cortex in Primates

  • Rosalyn E. Weller
  • Jon H. Kaas
Part of the Cortical Sensory Organization book series (CSO, volume 2)

Abstract

Over the last several years, considerable progress has been made in understanding the connections of the visual system in primates. Much of this progress has been the result of applications of the relatively new and powerful autoradiographic and histochemical tracing methods that reveal connections in great detail and clarity. The major limitation on further understanding of visual system connections does not seem to be technical at this time, but rather it is our incomplete knowledge of the functional subdivisions of the primate visual system. It is difficult to study connections of parts of the brain for which the organization and divisions into separate areas or nuclei are still unclear. Quite different schemes of cortical organization have been proposed for visual cortex of New World (5–7) and Old World monkeys (96, 111, 116–118) and neither of these schemes includes all of visually responsive cortex. For example, neither organization deals with subdivisions of inferotemporal cortex, a visually responsive region of cortex that in Old World monkeys has received detailed attention (33, 34, 59), without completely resolving the issue of number and boundaries of subdivisions. Efforts have been made to show similarites in cortical organization between Old and New World primates (1, 95, 99), but how similar or dissimilar the two groups of primates are presently remains uncertain.

Keywords

Retina Stein Tral Lamination Topo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allman, J. M. Cortical visual areas in the owl monkey: topographic organization and functional correlates. This volume, chapter 15.Google Scholar
  2. 2.
    Allman, J. M., and Kaas, J. H. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res., 31: 85–105, 1971a.PubMedCrossRefGoogle Scholar
  3. 3.
    Allman, J. M., and Kaas, J. H. Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res., 35: 89–106, 1971b.PubMedCrossRefGoogle Scholar
  4. 4.
    Allman, J. M., and Kaas, J. H. The organization of the second visual area (V II) in the owl monkey: A second order transformation of the visual hemifield. Brain Res., 81: 247–265, 1974a.CrossRefGoogle Scholar
  5. 5.
    Allman, J. M., and Kaas, J. H. A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Res., 81: 199–213, 1974b.PubMedCrossRefGoogle Scholar
  6. 6.
    Allman, J. M., and Kaas, J. H. The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Res., 100: 473–487, 1975.PubMedCrossRefGoogle Scholar
  7. 7.
    Allman, J. M., and Kaas, J. H. Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. Science, 191: 572–575, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Allman, J. M., and Kaas, J. H., and Lane, R. H. The middle temporal visual area (MT) in the bushbaby, Galago senegalensis. Brain Res., 57: 197–202. 1973.PubMedCrossRefGoogle Scholar
  9. 9.
    Allman, J. M., and Kaas, J. H., and Miezin, F. M. A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey (Aotus trivirgatus). Brain Res., 40: 291–302, 1972.PubMedCrossRefGoogle Scholar
  10. 10.
    Benevento, L. A., and Davis, B. Topographical projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: an autoradiographic study. Exptl. Brain Res., 30: 405–424, 1977.CrossRefGoogle Scholar
  11. 11.
    Benevento, L. A., and Fallon, J. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol, 160: 339–362, 1975.PubMedCrossRefGoogle Scholar
  12. 12.
    Benevento, L. A., and Rezak, M. Extrageniculate projections to layers VI and I of striate cortex (area 17) in the rhesus monkey (Macaca mulatta). Brain Res., 96: 51–55, 1975.PubMedCrossRefGoogle Scholar
  13. 13.
    Benevento, L. A., and Rezak, M. The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): An autoradiographic study. Brain Res., 108: 1–24, 1976.PubMedCrossRefGoogle Scholar
  14. 14.
    Brodal, P. The corticopontine projection in the rhesus monkey. Brain, 101: 251–283, 1978.PubMedCrossRefGoogle Scholar
  15. 15.
    Brodmann, K. Beitrage zur histologischen Lokalisation der Gross– hirnrinde. J. Psych. Neurol., Leipzig, 4: 177–226, 1905.Google Scholar
  16. 16.
    Bunt, A., Hendrickson, A., Lund, J., Lund, R., and Fuchs, a. Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique, J. Comp. Neurol., 164: 265–286, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    Campos-Ortega, J. A. Descending subcortical projections from the occipital lobe of Galago crassicaudatus. Exptl. Neurol., 21: 440 — 454, 1968.CrossRefGoogle Scholar
  18. 18.
    Campos-Ortega, J. A., and Hayhow, W. R. On the organization of the visual cortical projection to the pulvinar in Macaca mulatta. Brain, Behav. Evol., 6: 394–443, 1972.Google Scholar
  19. 19.
    Campos-Ortega, J. A., Hayhow, W. R., and Culver, P. F. DeV. The descending projections from the cortical visual fields of Macaca mulatta with particular reference to the question of a cortico-lateral geniculate pathway. Brain, Behav. Evol., 3: 368–414, 1970.CrossRefGoogle Scholar
  20. 20.
    Carey, R. G., Fitzpatrick, P., and Diamond, I. T. Layer I of striate cortex of Tupaia glis and Galago senegalensis: Projections from the thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J. Comp. Neurol, 186: 393–438, 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    Colonnier, M., and Sas, E. An anterograde degeneration study of the tangential spread of axons in cortical areas 17 and 18 of the squirrel monkey (Saimiri sciureus). J. Comp. Neurol, 179: 245–262, 1978.PubMedCrossRefGoogle Scholar
  22. 22.
    Cowey, A. Projection of the retina on the striate cortex and prestriate cortex in the squirrel monkey, Saimiri sciureus, J. Neurophysiol, 27: 266–393, 1964.Google Scholar
  23. 23.
    Cragg, B. G., and Ainsworth, A. The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res., 9: 733–747, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    Curcio, C. A., and Harting, J. K. Organization of pulvinar afferents to area 18 in the squirrel monkey: evidence for stripes. Brain Res., 143: 155–161, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Daniel, P. M., and Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol, London, 159–221, 1961.Google Scholar
  26. 26.
    Diamond, I. T., and Hall, W. C. Evolution of neocortex. Science, 164: 251–262, 1969.PubMedCrossRefGoogle Scholar
  27. 27.
    Dreher, B., Fukada, Y., and Rodieck, R. Identification, classification and anatomical segregation of cells with X-like properties in the lateral geniculate nucleus of Old World primates. J. Physiol, London, 258: 433–452, 1976.Google Scholar
  28. 28.
    Gattass, R., and Gross, C. G. A visuotopically organized area in the posterior superior temporal sulcus of the macaque. ARVO Abstracts, 184, 1979.Google Scholar
  29. 29.
    Gattass, R., Oswaldo-Cruz, E. And Sousa, A. P. B. Visuotopic organization of the cebus pulvinar: A double representation of the contralateral hemifield. Brain Res., 152: 1–16, 1978.Google Scholar
  30. 30.
    Glickstein, M., Stein, J. and King, R. A. Visual input to the pontine nuclei. Science, 173: 1110–1111, 1972.CrossRefGoogle Scholar
  31. 31.
    Graham, J., Wall, J., and Kaas, J. H. Cortical projections of the medial visual area in the owl monkey. Neurosci. Letters, 15: 109–114, 1979.CrossRefGoogle Scholar
  32. 32.
    Graham, J., Lin, C.-S., and kaas, J. H. Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. J. Comp. Neurol., 187: 557–580, 1979.CrossRefGoogle Scholar
  33. 33.
    Gross, J. C., Bender, D. B., and Rocha-Miranda, D. E. Infero-temporal cortex: a single-unit analysis. In: F. O. Schmitt and F. G. Worden. The Neurosciences: Third Study Program, edited by Cambridge, Mass., MIT Press, 1973, 229–238.Google Scholar
  34. 34.
    Gross, C. G., Bruce, C. J., Desimone, R., Fleming, J, and Gattass, R. Visual areas of the temporal lobe. This volume, chapter 16.Google Scholar
  35. 35.
    Harting, J. K., Hall, W. C., and Diamond, I. T. Evolution of the pulvinar. Brain, Behav. Evol. 6: 424–452, 1972.CrossRefGoogle Scholar
  36. 36.
    Harting, J. K., Casagrande, V. A., and Weber, J. T. The projection of the primate superior colliculus upon the dorsal lateral geniculate nucleus: autoradiographic demonstration of interlaminar distribution of tectogeniculate axons. Brain Res., 150: 593–599, 1978.PubMedCrossRefGoogle Scholar
  37. 37.
    Hassler, R. Comparative anatomy of the central visual systems in day– and night-active primates. In: Evolution of the Forebrain, edited by r. Hassler and H. Stephan. New York: Plenum Press, 1967, pp. 419–434.Google Scholar
  38. 38.
    Hendrickson, A. E., Wilson, J. R., and Ogren, M. P. The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J. Comp. Neurol., 182: 123–136, 1978.PubMedCrossRefGoogle Scholar
  39. 39.
    Hollander, H. Projections from the striate cortex to the diencephalon in the squirrel monkey (Saimiri sciureus). A light microscopic radioautographic study following intracortical injection of 3H leucine. J. Comp. Neurol, 155: 425–440, 1974.PubMedCrossRefGoogle Scholar
  40. 40.
    Hollander, H., and Martinez-Millan, M. Autoradiographic evidence for a topographically organized projection from the striate cortex to the lateral geniculate nucleus in the rhesus monkey (Macaca mulatta). Brain Res., 100: 407–411, 1975.CrossRefGoogle Scholar
  41. 41.
    Hubel, D. H., and Wiesel, T. N. Laminar and columnar distribution of geniculocortical fibers in the macaque monkey. J. Comp. Neurol, 146: 421–450, 1972.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones, E. G. Some aspects of the organization of the thalamic reticular complex. J. Comp. Neurol, 162: 285–308, 1975.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaas, J. H. The organization of visual cortex in primates. In: Sensory Systems of Primates, edited by C. R. Noback. New York: Plenum Press, 1978, pp. 151–179.Google Scholar
  44. 44.
    Kaas, J., and Lin, C.-S. Cortical projections of area 18 in owl monkeys. Vision Res., 17: 739–741, 1977.PubMedGoogle Scholar
  45. 45.
    Kaas, J. H., Guillery, R. W., and Allman, J. M. Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav. Evol., 6: 253–299, 1972.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaas, J. H., Lin, C.-S., and Wagor, E. Cortical projections of posterior parietal cortex in owl monkeys. J. Comp. Neurol., 171: 387–408, 1977.CrossRefGoogle Scholar
  47. 47.
    Kaas, J. H., Huerta, M. F., Weber. J. T., and Harting, J. K. Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J. Comp. Neurol., 182: 517–554, 1978.Google Scholar
  48. 48.
    Killackey, H. P. and Ebner, F. F. Two different types of thalamocortical projections to a single cortical area in mammals. Brain, Behav. Evol, 6: 141–169, 1972.CrossRefGoogle Scholar
  49. 49.
    Kuypers, H. G., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E. Occipitotemporal corticocortical connections in the rhesus monkey. Exptl Neurol, 11: 245–262, 1965.CrossRefGoogle Scholar
  50. 50.
    Lin, C.-S., and Kaas, J. H. Projections from cortical visual areas 17, 18, and MT onto the dorsal lateral geniculate nucleus in owl monkeys. J. Comp. Neurol, 173: 457–473, 1977.PubMedCrossRefGoogle Scholar
  51. 51.
    Lin, C.-S., and Kaas, J. H. The inferior pulvinar complex in owl monkeys: architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex. J. Comp. Neurol, 187: 655–678, 1979.PubMedCrossRefGoogle Scholar
  52. 52.
    Lin, C.-S., Wagor, E., and Kaas, J. H. Projections from the pulvinar to the middle temporal visual area (MT) in the owl monkey, Aotus trivirgatus. Brain Res., 76: 145–149, 1974.CrossRefGoogle Scholar
  53. 53.
    Locke, S., Wright, S., Jr., and Hilsz, J. Projection of medial occipital cortex of macaque to posterior thalamus. Brain, 97: 65 — 68, 1974.PubMedCrossRefGoogle Scholar
  54. 54.
    Lorente de No. Architectonics and the structure of the cerebral cortex. In: Physiology of the Nervous System, Edited by J. F. Fulton. New York: Oxford University Press, 291–330, 1938.Google Scholar
  55. 55.
    Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. H., and Fuchs, A. F. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol, 164: 287–304.Google Scholar
  56. 56.
    Marocco, R. T., and Li, R. H. Monkey superior colliclus: properties of single cells and their afferent inputs. J. Neurophysiol, 40: 844— 860, 1977.Google Scholar
  57. 57.
    Martinez-Millan, M., and Hollander, H. Cortico-cortical projections from striate cortex of the squirrel monkey (Saimiri sciureus). A radioautographic study. Brain Res., 83: 405 — 417, 1975.CrossRefGoogle Scholar
  58. 58.
    McLoon, S. D., Santos-Anderson, R., and Benevento, L. A. Some projections of the posterior bank and floor of the superior temporal sulcus in the macaque monkey. Neurosci. Abst., 1: 64, 1975.Google Scholar
  59. 59.
    Mishkin, M. Visual mechanisms beyond the striate cortex. In: Russell, R. W. Frontiers in Physiological Psychology, New York: Academic Press, 1966, pp. 93–119.Google Scholar
  60. 60.
    Mohler, C. W., and Wurtz, R. H. Organization of monkey superior colliculus: Intermediate layer cells discharging before eye movements. J. Neurophysiol., 39: 722–744, 1976.Google Scholar
  61. 61.
    Myers, R. E. Commissural connections between occipital lobes of the monkey. J. Comp. Neurol., 118: 1–16, 1962.PubMedCrossRefGoogle Scholar
  62. 62.
    Newsome, W. T., and Allman, J. M. Interhemispheric connections of visual cortex in the owl monkey, Aotus trivigatus, and the bushbaby, Galago sertgalensis. J. Comp. Neurol., 194: 209–234, 1980.CrossRefGoogle Scholar
  63. 63.
    Norden, J. J., and Kaas, J. H. The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase. J. Comp. Neurol., 182: 707–726, 1978.PubMedCrossRefGoogle Scholar
  64. 64.
    Norden, J. J., Lin, C.-S., and Kaas, J. H. Subcortical projections of the dorsomedial visual area (DM) of visual association cortex in the owl monkey Aotus trivirgatus. Exptl. Brain Res., 32: 321. 334, 1978.Google Scholar
  65. 65.
    Ogren, M., and Hendrickson, A. Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: Evidence for a reciprocal pulvinar connection. Exptl. Neurol., 53: 780–800, 1976.CrossRefGoogle Scholar
  66. 66.
    Ogren, M. P., and Hendrickson, A. E. The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Res., 137: 343–350, 1977.PubMedCrossRefGoogle Scholar
  67. 67.
    Pandya, E. N., and Kuypers, H. G. Cortico-cortical connections in the rhesus monkey. Brain Res., 13: 13–36, 1969.PubMedCrossRefGoogle Scholar
  68. 68.
    Raczkowski, D., and Diamond, I. T. Connections of the striate cortex in Galago sertegalensis. Brain Res., 144: 383–388, 1978.CrossRefGoogle Scholar
  69. 69.
    Rezak, M., and Benevento, L. A. A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res., 167: 19–40, 1979.PubMedCrossRefGoogle Scholar
  70. 70.
    Rocha-Miranda, C. E., Bender, D. B., Gross, C. G., and Mishkin, M. Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commisures. J. Neurophysiol., 38: 475–491, 1975.PubMedGoogle Scholar
  71. 71.
    Rowe, L., and Stone, J. Naming of neurons. Classification and naming of cat retinal ganglion cells. Brain, Behav. Evol., 14: 185– 216, 1977.Google Scholar
  72. 72.
    Schiller, D. H., and Koerner, F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol., 34: 920–936, 1971.PubMedGoogle Scholar
  73. 73.
    Schiller, H., and Malpeli, J. G. Properties and tectal projections of monkey retinal ganglion cells. J. Neurophysiol., 40: 428 — 445, 1977.PubMedGoogle Scholar
  74. 74.
    Schiller, P. H., and Malpeli, J. G. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J. Neurophysiol., 41: 788–797, 1978.PubMedGoogle Scholar
  75. 75.
    Schiller, P. H., and Stryker, M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol., 35: 915–924, 1971.Google Scholar
  76. 76.
    Seltzer, B., and Pandya, D. N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res., 149: 1–24, 1978.PubMedCrossRefGoogle Scholar
  77. 77.
    Sherman, S., Wilson, J., Kaas, J., and Webb, S. X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science, 192: 475–477, 1976.PubMedCrossRefGoogle Scholar
  78. 78.
    Sparks, D. L. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain Res., 156: 1–16, 1978.PubMedCrossRefGoogle Scholar
  79. 79.
    Spatz, W. B. An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset, Callithrix. Brain Res., 97: 450–455, 1975.Google Scholar
  80. 80.
    Spatz, W. B. Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in marmoset, Callithrixjacchus. Exptl. Brain Res., 27: 91–108, 1977.Google Scholar
  81. 81.
    Spatz, W. B., and Erdmann, G. Striate cortex projections to the lateral geniculate and other thalamic nuclei: a study using degeneration and autoradiographic tracing methods in the marmoset, Callithrix. Brain Res., 82: 91–108, 1974.CrossRefGoogle Scholar
  82. 82.
    Spatz, W. B., and Tigges, J. Species difference between Old World and New World monkeys in the organization of the striate-prestriate association. Brain Res., 43: 591–594, 1972a.PubMedCrossRefGoogle Scholar
  83. 83.
    Spatz, W. B., and Tigges, J. Experimental anatomical studies on the “Middle Temporal Visual Area (MT)” in primates. I. Efferent corticocortical connections in the marmoset, Callithrix jacchus. J. Comp. Neurol, 146: 451–464, 1972b.CrossRefGoogle Scholar
  84. 84.
    Spatz, W. B., and Tigges, J. Studies on the visual area MT in primates. II. Projection fibers to subcortical structures. Brain Res., 61: 371–378, 1973.CrossRefGoogle Scholar
  85. 85.
    Spatz, W. B.., Tigges, J., and Tigges, M. Subcortical projections, cortical associations and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey. (Saimiri). J. Comp. Neurol, 140: 155–174, 1970.PubMedCrossRefGoogle Scholar
  86. 86.
    Symonds, L. L., and Kaas, j. H. Connections of striate cortex in the prosimian, Galago senegalensis. J. Comp. Neurol, 181: 477–512, 1978.CrossRefGoogle Scholar
  87. 87.
    Tigges, J., Bos, J., and Tigges, M. An autoradiographic investigation of the subcortical visual system in chimpanzees. J. Comp. Neurol, 172: 367–380, 1977.PubMedCrossRefGoogle Scholar
  88. 88.
    Tigges, J., Spatz, W. B., and Tigges, M. Reciprocal point-to-point connections between parastriate and striate cortex in the squirrel monkey. (Saimiri). J. Comp. Neurol., 148: 481–490, 1973a.PubMedCrossRefGoogle Scholar
  89. 89.
    Tigges, J., Spatz, W. B., and Tigges, M. Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Samiri). J. Comp. Neurol., 158: 219–236, 1974.PubMedCrossRefGoogle Scholar
  90. 90.
    Tigges, J., Tigges, M., and Kalaha, C. S. Efferent connections of area 17 in Galago. Amer. J. Physical Anthro., 38: 393–398, 1973b.CrossRefGoogle Scholar
  91. 91.
    Tigges, J., Tigges, M., and Perachio, A. Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey. J. Comp. Neurol., 176: 371–396, 1976.Google Scholar
  92. 92.
    Trojanowski, J. Q., and Jacobson, s. Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey. J. Comp. Neurol, 169: 371–396, 1976.PubMedCrossRefGoogle Scholar
  93. 93.
    Trojanowski, J. Q., and Jacobson, S. The morphology and laminar distribution of cortico-pulvinar neurons in the rhesus monkey. Exptl. Brain Res., 28: 51–62, 1977.CrossRefGoogle Scholar
  94. 94.
    Ungerleider, L. G., and Mishkin, M. The striate projection zone in the superior temporal sulcus of Macaca mulatta: location and topographic organization. J. Comp. Neurol., 188: 347–366, 1979.PubMedCrossRefGoogle Scholar
  95. 95.
    Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L. The organization of extrastriate visual areas in the macaque monkey. This volume, chapter 14.Google Scholar
  96. 96.
    Van Essen, D. C., and Zeki, S. M. The topographic organization of prestriate cortex. J. Physiol, London, 277: 193–226, 1978.Google Scholar
  97. 97.
    Wagor, E., Lin, C.-S., and Kaas, J. H. Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey, Aotus trivirgatus. J. Comp. Neurol, 163: 227–250, 1975.PubMedCrossRefGoogle Scholar
  98. 98.
    Wall, J. T., Symonds, L. L., and Kaas, J. H. Projections of the middle temporal visual area (MT) in the prosimian Galago senegalensis. Arvo Abst., 1, 1980.Google Scholar
  99. 99.
    Weller, R. E., and Kaas, J. H. Connections of striate cortex with the posterior bank of the superior temporal sulcus in macaque monkeys. Neurosci Abst., 4: 650, 1978.Google Scholar
  100. 100.
    Weller, R. E., and Kaas, J. H. Connections of the dorsolateral visual area (DL) of extrastriate visual cortex of the owl monkey (Aotus trivirgatus) Neurosci. Abst., 6: 579, 1980.Google Scholar
  101. 101.
    Weller, R. E., Kaas, J. H., and Wetzel, A. B. Evidence for the loss of X–cells of the retina after long-term ablation of visual cortex in monkeys. Brain Res., 160: 134–138, 1979.PubMedCrossRefGoogle Scholar
  102. 102.
    Weller, R. E., Graham, J., and Kaas, J. H. Cortical connections of striate cortex in macaque monkeys. ARVO Abst., 157, 1979.Google Scholar
  103. 103.
    Whitteridge, D. Area 18 and the vertical meridian of the visual field. In: Functions of the Corpus Callosum, edited by E. G. Ettlinger, London: Ciba Foundation, 1965, pp. 115–120.Google Scholar
  104. 104.
    Wilson, M., and Toyne, N. Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res., 24: 395–406, 1970.PubMedCrossRefGoogle Scholar
  105. 105.
    Wong-Riley, M. T. T. Demonstration of the geniculo-cortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. Brain Res., 79: 267–272, 1974.CrossRefGoogle Scholar
  106. 106.
    Wong-Riley, M. Autoradiographic studies of subcortical and cortical projections from striate and extrastriate cortices of squirrel and macaque monkeys. Anat Rec., 184: 566, 1976.Google Scholar
  107. 107.
    WongRiley, M. T. T. Connections between the pulvinar nucleus and the prestriate cortex in the squirrel monkey as revealed by peroxidase histochemistry and autoradiography. Brain Res., 134: 249–267, 1977.CrossRefGoogle Scholar
  108. 108.
    WongRiley, M. Reciprocal connections between striate and pre-striate cortex in squirrel monkey as demonstrated by combined peroxidase histochemistry and autoradiography. Brain Res., 147: 159–164, 1978.CrossRefGoogle Scholar
  109. 109.
    WongRiley, M. Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys. Brain Res., 162: 201–217, 1979.CrossRefGoogle Scholar
  110. 110.
    Wurtz, R. H., and Goldberg, M. E. Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. J. Neurophysiol., 35: 587–596, 1972.PubMedGoogle Scholar
  111. 111.
    Zeki, S. M. Representation of central visual fields in prestriate cortex of monkey. Brain Res., 14: 271–291, 1969.PubMedCrossRefGoogle Scholar
  112. 112.
    Zeki, S. M. Interhemispheric connections of prestriate cortex in monkey. Brain Res., 19: 63–75, 1970.PubMedCrossRefGoogle Scholar
  113. 113.
    Zeki, S. M. Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. Brain Res., 28: 338–340, 1971a.PubMedCrossRefGoogle Scholar
  114. 114.
    Zeki, S. M. Cortical projections from two prestriate areas in the monkey. Brain Res., 34: 19–35, 1971b.PubMedCrossRefGoogle Scholar
  115. 115.
    Zeki, S. M. The projections to the superior temporal sulcus from areas 17 and 18 in the rhesus monkey. Proc. Roy. Soc., London, B, 193: 199–207, 1976.Google Scholar
  116. 116.
    Zeki, S. M. The cortical projections of foveal striate cortex in the rhesus monkey. J. Physiol., London, 227–244, 1978a.Google Scholar
  117. 117.
    Zeki, S. M. The third visual complex of rhesus monkey prestriate cortex. J. Physiol., London, 277: 245–272, 1978b.Google Scholar
  118. 118.
    Zeki, S. M. Functional specialization in the visual cortex of the rhesus monkey. Nature, 274: 423–428, 1978c.PubMedCrossRefGoogle Scholar
  119. 119.
    Zeki, S. M. and Sandeman, D. R. Combined anatomical and elec–trophysiological studies on the boundary between the second and third visual areas of rhesus monkey cortex. Proc. Roy. Soc., London, B, 194: 555–562, 1976.CrossRefGoogle Scholar

Copyright information

© The HUMANA Press Inc. 1981

Authors and Affiliations

  • Rosalyn E. Weller
    • 1
  • Jon H. Kaas
    • 1
    • 2
  1. 1.Departments of PsychologyVanderbilt UniversityNashvilleUSA
  2. 2.Departments of AnatomyVanderbilt UniversityNashvilleUSA

Personalised recommendations