Skip to main content

Ultrasonic Measurement Techniques and Equipment Output Levels

  • Chapter
Book cover Essentials of Medical Ultrasound

Part of the book series: Medical Methods ((MM))

Abstract

The accurate measurement of the output levels of medical diagnostic and therapeutic ultrasound equipment have become important to manufacturers and users as a result of the increasing use of these devices. Such measurements are important for several reasons. First, there is the question of possible risk to health associated with diagnostic and therapeutic ultrasound. Accurate measurements of ultrasound levels used in biological effects investigations are needed so that other investigators can repeat the experiments. In addition, it is desirable that the output from equipment in clinical use be known so that it can be related to reported biological effects (Nyborg, 1977; Stratmeyer, 1977; Stewart et al., 1977; Stratmeyer and Stewart. 1979). Second, measurement procedures are necessaryfor the calibration of ultrasonic equipment (e.g., theraphy instruments) in which there is a need to provide a known exposure for various treatments. Third, it is important from the standpoint of equipment performance to know the ultrasonic output of equipment in relation to other performance parameters such as imaging capabality. Fourth , accurate measurement methods are needed if regulatory agencies are to evaluate equipment to ensure the proper calibration in compliance with performance standards (Federal Register, 1978, 1979; Repacholi and Benwell, 1979; Stewart et. al., 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abzug, J. L., Evaluation of Ohmic Instrument Company Model UPM-30 Ultrasound Power Meter, HEW Publication (FDA) 79–8075, November, 1978.

    Google Scholar 

  • Carson, P. L., Fischella, P. R., and Oughton, T. V., Ultrasonic power and intensities produced by diagnostic ultrasound equipment, Ultrasound Med. Biol. 33, 341–350, 1978.

    Article  Google Scholar 

  • Cartensen, E. L., Self–reciprocity calibration of electroacoustic transducers, Acoust. Soc. Am. 19, 961–966, 1947.

    Article  Google Scholar 

  • Carstensen, E. L., and Child, S. Z., American Institute of Ultrasound in Medicine 1979 Mtg., Montreal, Abstract, 1979.

    Google Scholar 

  • Clark, J., Bessel fringes, Opt. Commun. 16, 141, 1976.

    Article  Google Scholar 

  • Commun. Electron., American Institute of Electrical Engineers, Paper No. 60–35, July 1969.

    Google Scholar 

  • Cook, B., Determination of finite amplitude distortion by light diffraction, J. Acoust. Soc. Amer. 32, 336, 1960.

    Article  Google Scholar 

  • Cook, B. D., and Berlinghier, J. C. Calibration of ultrasonic fields from acousto-optic data using fourier transform techniques theory, J. Acoust. Soc. Amer. 61, 1477, 1977.

    Article  Google Scholar 

  • David, H., Weaver, J. B., and Pearson, J. F., Doppler ultrasound and fetal activity, Brit. Med. J. 2, 62–64, 1975.

    Article  PubMed  CAS  Google Scholar 

  • De Reggi, A. S., Roth, S., Kenny, J., and Edelman, S., Polymeric ultrasonic probe (abstract), J. Acoust. Soc. Amer. 64, Suppl. No. 1, 55–56, 1978.

    Google Scholar 

  • Dragonette, L., Schlieren visualization of radiation caused by illumination of plates with short acoustic pulses, J. Acoust. Soc. Amer. 51, 920, 1972.

    Article  Google Scholar 

  • Dunbar, L. E., Torque feedback radiometer for ultrasonic power measurements, J. Clin. Ultrasound 4, No. 4, 293 — 295, 1978.

    Article  Google Scholar 

  • Dunn, F., A primary method for the determination of ultrasonic intensity with the elastic sphere radiometer, Acustica 38, (1), 58–61, 1977.

    Google Scholar 

  • Dyson, M., and Pond, J., Effects of ultrasound on circulation, Physiotherapy 59, (9), 284–287, Sept. 1973.

    PubMed  CAS  Google Scholar 

  • Eggleton, R. C., and Wolfla, L. H., A radiation force balance for calibration of ultrasonic visualization equipment, paper presented at the Annual Meeting of the American Institute of Ultrasound in Medicine, 1978.

    Google Scholar 

  • Endo, T., Okumura, T., Miyasaki, H., Ohta, Y., and Fukamuchi, M., Power reduction of doppler instrument for safety, Med. Ultrason. II, no. 1, 91–94, 1973.

    Google Scholar 

  • Erikson, K. R., Calibration of standard ultrasonic probe transducers using light diffraction, HEW Publication (FDA) 73–8008, 193–187, Sept. 1972.

    Google Scholar 

  • Farmery, M. J., and Whittingham, T. A., A portable radiation force balance for use with diagnostic ultrasonic equipment, Ultrasound Med. Biol. 3, 373–377, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Fry, W. J., and Fry, W. B., Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes, J. Acoust. Soc Amer. 25, 294–310, May 1954.

    Article  Google Scholar 

  • Fry, W. J., and Dunn, F., Ultrasound analysis and experimental methods in biological research, in Physical Techniques in Biological Research, Vol. 4, Special Methods, Nastuk, W. L., ed., Academic Press, New York, 1962, 261–394.

    Google Scholar 

  • Federal Register 43, Department of Health, Education, and Welfare, Food and Drug Administration, Ultrasonic therapy products radiation safety performance standard, No. 34, Part VI, Title 21, Part 1050, pp. 7166–7172, February 17, 1978.

    Google Scholar 

  • Federal Register 44, Department of Health, Education, and Welfare, Food and Drug Administration, Diagnostic ultrasound equipment, notice of intent to propose rules and develop recommendations, No. 31, pp. 9542–9545, Tuesday, February 13, 1979.

    Google Scholar 

  • Greenspan, M., Breckinridge, F. R., and Tschiegg, C. E., Ultrasonic transducer power output by modulated radiation pressure (with details), NBS publication, NBSIR 78–1520, July 1978.

    Google Scholar 

  • Haran, M. E., Ultrasonic acousto-optic measurement techniques, in Symposium on Biological Effects and Characterization of Ultrasound Sources, HEW Publication (FDA) 78–8044, 90–98, 1977.

    Google Scholar 

  • Haran, M. E., Visualization and measurement of ultrasonic wavefronts, IEEE Proc. 67, No. 4, 454–466. April 1979.

    Article  Google Scholar 

  • Haran, M. E., Cook, B. D., and Stewart, H. F., A comparison of an acousto-optic and radiation force method of measuring ultrasonic power, J. Acoust. Soc. Amer. 57, 1436–1440, June 1975.

    Article  Google Scholar 

  • Harris, G. R., Herman, B. A., Haran, M. E., and Smith, S. W., Calibration and use of miniature ultrasonic hydrophones, Symposium on Biological Effects and Characterizations of Ultrasound Sources, HEW Publication (FDA) 78–08044, pp. 169–174, June 2–3, 1977.

    Google Scholar 

  • Hasegawa, T., Acoustic radiation force on a sphere in quasista-tionary wave field-experiment, J. Acoust. Soc. Amer. 65, No. 1, 41, January 1979.

    Article  Google Scholar 

  • Herman, B. A., Stewart, H. F., Robinson, R. A., and Zienuik, G., Thermal methods for low level ultrasonic energy measurement, in Symposium on Biological Effects and Characterizations of Ultrasound Sources, HEW Publication (FDA) 78–8044, 145–152, 1977.

    Google Scholar 

  • Herrey, E. M. J., Experimental studies on acoustic radiation pressure. J. Acoust. Soc. Amer. 27, 891–896, 1955.

    Article  Google Scholar 

  • Hertz, R. H., Timor–Tritseh I, Dierker, L., Check, L., Rosen, M. G., Continuous ultrasound and fetal movement, Am. J. Obstet. Gynecol. 135, 152–154, 1979.

    CAS  Google Scholar 

  • Hill, C. R., Acoustic intensity measurement on ultrasonic diagnostic devices, in Ultrasongraphia Medica, Bock, J., and Ossoinig, J., eds., First World Congress on Ultrasonic Diagnostic in Medicine and SIDUO III, June 2–7, 1959. Vienna-Austria, Verlag Der Wichger Medizinischen Akademie.

    Google Scholar 

  • Hueter, T. F., and Bolt, R. H., Sonics, Wiley, New York, 1955, pp. 43–53.

    Google Scholar 

  • Jones, J. B., A calorimetric method and apparatus for evaluating transducer assemblies, IEEE Trans. Sonics Ultrasonics 16, 76–78, April 1–969.

    Google Scholar 

  • Koppelmann, V. J., Brendel, K., and Wolf, J., Calibration of underwater sound transducers in the frequency range: 75 KHz to 2 MHz, Acustica 25, 73–80, 1971.

    Google Scholar 

  • Kossoff, G., Calibration of ultrasonic therapeutic equipment, Acustica 12, 84, 1962.

    Google Scholar 

  • Kossoff, G., Balance technique of measurement of very low ultrasonic powers, J. Acoust. Soc. Amer. 38, 880 — 881, 1965.

    Article  Google Scholar 

  • Lewin, P. A., Ultrasound induced damage of biological tissue, PhD Thesis, AFM 78–16, Copenhagen, Technical University of Denmark, 1978.

    Google Scholar 

  • Lewin, P. A., and Jensen, F., The use of miniature transducers for measurement in penetralli media, in Proceedings of the Ultrasonic International 79, IPC Press, Guildford, Surrey, England, 1979.

    Google Scholar 

  • MacLean, W. R., Absolute measurement of sound without a primary standard, J. Acoust. Soc. Amer. 12, 140, 1940.

    Article  Google Scholar 

  • Martin, C. J., Gemmel, H. G., and Watmough, D. J., A study of streaming in plant tissue induced by a doppler fetal heart detector, Ultrasound Med. Biol. 4, 131–138, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Mezrich, R., Etzold K., and Vilkomerson, D., A system for visualizing and measuring ultrasonic wavefronts, Acoustical Holography, vol. 6, Booth, N., ed., Plenum Press, New York, 1975, p. 165.

    Google Scholar 

  • Murai, N. K., Hoshi, K., and Nakamura, T., Effects of diagnostic ultrasound irradiated during fetal stage on development of orienting behavior reflex ontogery in rats, Tohoka J. Exp. Med. 116, 17–024, 1975.

    Article  CAS  Google Scholar 

  • Neubaurer, W., and Dragonette, L., A schlieren system used for making movies of sound waves, J. Acoust. Soc. Amer. 49, 410, 1971.

    Article  Google Scholar 

  • Nyborg, W. L., Physical mechanisms for biological effects of ultrasound, HEW Publication (FDA) 78–8062, Washington, DC, September, 1977.

    Google Scholar 

  • Oberst, H., and Rieckmann, P., Methods of measurement used by the federal institute of physical technology for the evaluation and certificaion of medical ultrasonic instruments, Physickal– isch Technischen Bundesanstalt, Hs, S. 35, 1953.

    Google Scholar 

  • Raman, C. F., and Nath, N. S. N., The diffraction of light by high frequency sound wave, Proc. Indian Acad. Sci. 2, 406, 1935; 2, 413, 1935; 3, 75, 1936; 3, 119, 1936; 33, 459, 1936.

    Google Scholar 

  • Reid, J. M., Self–reciprocity calibration of echo-ranging transducers, J. Acoust. Soc. Amer. 55, No. 4, 862–868, April 1974.

    Article  Google Scholar 

  • Repacholi, M. H., and Benwell, D. A., Using surveys of ultrasonic therapy devices to draft performance standards, Health Physics 36, 679–686, June 1979.

    Article  PubMed  CAS  Google Scholar 

  • Riley, W., and Barnes, R., Observation of pulsed medical ultrasound gratinas in the optical farfield, J. Acoust. Soc. Amer. 62, 511, 1977.

    Article  Google Scholar 

  • Rooney, J. N., and Nyborg, W. L., Acoustic radiation pressure in a travelling plane wave, Am. J. Phys. 40, 1825–1830, 1972.

    Article  Google Scholar 

  • Rooney, J. A., Acoustic radiation pressure and its use in power and intensity determinations, presentation at 84th Meeting of the Acoustical Society of America, November 28–December 1, 1972, Miami, Florida.

    Google Scholar 

  • Rooney, J. A., Determination of acoustic power outputs in the microwatt–milliwatt range, Ultrasound Med. Biol. 1, 1 — 16, 1973.

    Article  Google Scholar 

  • Robinson, R. A., Radiation force techniques for laboratory and field measurements of ultrasonic power, Symposium on Bioeffects and Characterizations of Ultrasound Sources, HEW Publication (FDA) 78–8044, June 2–3, 1977, pp. 114–124.

    Google Scholar 

  • Sikov, M. R., Hildebrand, B. P., and Stearns, J. D., Postnatal sequelae of ultrasound exposure at fifteen days in gestation in the rat, paper presented at the 3rd World Congress of Ultrasonics in Medicine, 3B 2–17–2023, August 3–7, San Francisco, 1976.

    Google Scholar 

  • Simmons, B. D., and Urich, R., Plane wave reciprocity parameters and its application to calibration of electroacoustic transducers at close distances, J. Acoust. Soc. Amer. 21, 633–635, 1949.

    Article  Google Scholar 

  • Sokollu, A., Absolute measurement of total radiated power of ultrasonic transducers for biomedical use, Bull. Lab. Electro-acoustique Univ. Liege 9, 23 — 27, April 1966.

    Google Scholar 

  • Stanic, S., Quantitative schlieren visualization, Appl. Optics, 17, 837, 1978.

    Article  CAS  Google Scholar 

  • Stewart, H. F., Harris, G. R., Robinson, R. A., and Garry, J., Survey of use and performance of ultrasonic therapy units in the Washington, D.C. area, in Health Physics in the Healing Arts, HEW Publication (FDA) 73–8029, March 1974, pp. 467–472.

    Google Scholar 

  • Stewart, H. F., Harris, G. R., and Frost, H. M., Development of principles and concepts for specification of ultrasonic diagnostic equipment performance, Ultrasound in Medicine, Vol. 3B, Engineering Aspects, proceedings of the first triennial meeting of the World Federation for Ultrasound in Medicine and Biology, Plenum, 1977, pp. 2115–2142.

    Google Scholar 

  • Stewart, H. F., Abzug, J. L., and Harris, G. R., Considerations in ultrasound therapy and equipment performance, Physical Therapy, 60, 424–428, 1980.

    PubMed  CAS  Google Scholar 

  • Stewart, H. F., and Stratmeyer, M. E., An Overview of Ultrasound: Theory, Measurement, Medical Applications and Biological Effects, HHS Publication (FDA) 82–XXXX, Washington, D.C. (in press).

    Google Scholar 

  • Stewart, H. F., Ultrasonic measuring techniques, fundamental and applied aspects of non-ionizing radiation, Plenum, New York, 1975, 57–83.

    Google Scholar 

  • Stewart, H. F., Diagnostic ultrasonic output levels and quality assurance measurements, proceedings of the eleventh annual National Conference on Radiation Control, May 6–10, 1979.

    Google Scholar 

  • Stratmeyer, M. E., Research directions in ultrasound bioeffects-a public health view, Symposium on Biological Effects and Characterizations of Ultrasound Sources, HEW Publication (FDA) 78–8044, June 23, 1977, pp. 240–245.

    Google Scholar 

  • Stratmeyer, M. E., and Christman, C. L., Biological effects of ultrasound, in Obstetrical Intervention and Technologies in the 80s, Hayward Press (in press) 1982.

    Google Scholar 

  • Swamy, K. A., Lakshminarayana, K., Marty, S. J., and Swamy, P. S., Excess ultrasonic absorption in water and primary alcohols, Acustica 27 23–27, 1972.

    CAS  Google Scholar 

  • Van Den Ende, H., A radiation power calorimeter and radiation force meter for small ultrasonic beams, Med. Biol. Eng. 7, 411–417, 1969.

    Article  PubMed  Google Scholar 

  • Wells, P. N. T., Bullen, N. A., Follett, D. H., Freundlich, H. F., and Angell, J. J., The dosimetry of small ultrasonic beams, Ultrasonics, pp. 106–110, 1963.

    Google Scholar 

  • Wemlen, A., A milliwatt ultrasonic servo-controlled balance, Med. Biol. Eng. 6, 159–165, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Yosioka, K., Hasegawa, T., and Omura, A., Comparison of ultrasonic intensity from the radiation force on steel spheres with that on liquid spheres, Acustica, 22, pp. 145—152, 1969/70.

    Google Scholar 

  • Zapf, T. L., Calibration of quartz transducers as ultrasonic power standards by an electrical method, Ultrasonic Symposium Proceedings, IEEE Cat. No. 74 CHO 896–ISU, 1974.

    Google Scholar 

  • Zapf, T. L., Harvey, M. E., Larsen, M. T., and Stoltenbergy, R. E., Ultrasonic calorimeter for beam power measurements, NBS Tech. Note 686, SD Catalog No. C-13, 46;686, US DPO, Washington, DC, 1976.

    Google Scholar 

  • Zemanek, J., Beam behavior within the nearfield of vibrating piston, J. Acoust. Soc. Amer. 49, 181–191, 1971.

    Article  Google Scholar 

  • Ziedonis, J. J. G., Pressure balance design for measuring ultrasonic energy, paper presented at the 84th Meeting of the Acoustical Society of America, Miami, Florida, November 28, 1972.

    Google Scholar 

  • Ziedonis, J. G., Ultrasonic power levels used in commercial equipment for medical applications and how to control it for patients safety, Proceedings of the Society of Photo-Optical Instrumentation Engineers, 47, 110–110 August 1–2, 1974.

    Google Scholar 

  • Zieniuk, J. K., and Evans, B., The influence of thermal parameters on making ultrasonic power measurements by a calorimetric method, Acustica 25, 47–52, 1971.

    Google Scholar 

  • Zieniuk, J., and Chivers, R. C., Measurement of ultrasonic exposure with radiation force and thermal methods, Ultrasonics, 14, 161–172, 1976.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The HUMANA Press Inc.

About this chapter

Cite this chapter

Stewart, H.F. (1982). Ultrasonic Measurement Techniques and Equipment Output Levels. In: Repacholi, M.H., Benwell, D.A. (eds) Essentials of Medical Ultrasound. Medical Methods. Humana Press. https://doi.org/10.1007/978-1-4612-5805-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5805-6_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-5807-0

  • Online ISBN: 978-1-4612-5805-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics