Biophysical Mechanisms of Ultrasound

  • Wesley L. Nyborg
Part of the Medical Methods book series (MM)


In this chapter, we shall consider the question: Why does ultrasound cause bioeffects? Somewhat more fully, this may be put: Why does ultrasound produce changes in biological structures and/or changes in biological processes? The answer requires an examination of the basic principles that govern the interactions of ultrasound with matter, and what these principles mean when living systems are involved.


Velocity Gradient Radiation Pressure Radiation Force Biological Cell Sound Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AIUM Bioeffects Committee Report, Reflections 4, (4), 311, 1978.Google Scholar
  2. Apfel, R. E., Technique for measuring the adiabatic compressibility, density and sound speed of submicroliter liquid samples, J. Acoust. Soc. Am. 59, 339–343 (1976). In this paper the author describes a method that he has suggested (private communication) might be applicable to biological cells.CrossRefGoogle Scholar
  3. Baker, D., Forster, F. K., Daigle, R. E., Doppler Principles and Techniques, in Ultrasound: Its Applications in Medicine and Biology, Fry, F.J. ed., Elsevier, New York, 1978.Google Scholar
  4. Beyer, R. T., Radiation pressure—the history of a mislabeled tensor, J. Acoust. Soc. Am. 63, 1025–1030, 1978.CrossRefGoogle Scholar
  5. Brown, III, C. H., Lemuth, R. F., Heliums, J. D., Leverett, L. B., and Alfrey, C. P., Response of human platelets to shear stress, Trans. Amer. Soc. Artif. Int. Organs 21, 35–39, 1975.Google Scholar
  6. Carslow, H. S., and Jaeger, J. C., Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.Google Scholar
  7. Carson, P. L., Fischella, P. R., and Oughton, T. V., Ultrasonic power and intensities produced by diagnostic ultrasound equipment, Ultrasound Med. Biol. 3, 341–350, 1978.PubMedCrossRefGoogle Scholar
  8. Coakley, W. T., and Nyborg, W. L., Cavitation: Dynamics of Gas Bubbles: Applications, in Ultrasound: Its Applications in Medicine and Biology, F. J. Fry, ed., Elsevier, New York, 1978.Google Scholar
  9. Crum, L. A., Acoustic force on a liquid droplet in an acoustic stationary wave, J. Acoust. Soc. Am. 50, 157–163, 1971.CrossRefGoogle Scholar
  10. Crowell, J. A., Kusserow, B. K., and Nyborg, W. L., Functional changes in white blood cells after microsonation, Ultrasound Med. Biol. 3, 185–190, 1977.PubMedCrossRefGoogle Scholar
  11. Dunn, F., Lohnes, J. E., and Fry, F. J., Frequency dependence of threshold ultrasonic dosages for irreversible structural changes in mammalian brain, J. Acoust. Soc. Am. 58, 512–514, 1975.PubMedCrossRefGoogle Scholar
  12. Dyson, M., Woodward, B., and Pond, J. B., Flow of red blood cells stopped by ultrasound, Nature 232, 572–573, 1971.PubMedCrossRefGoogle Scholar
  13. Dyer, H. J., Structural effects of ultrasound on the cell, in Interaction of Ultrasound and Biological Tissues, Reid, J. M., and Sikov, M. R., eds., DHEW Publication (FDA) 73–8008, pp. 73–75, Bureau of Radiological Health, Rockville, Md. 20852, September 1972.Google Scholar
  14. Filipczynski, L., Thermal effects in soft tissues developed under the influence of focused ultrasonic fields of short duration, Arch. Acoust. 1, 309–322, 1976.Google Scholar
  15. Flynn, H. G., Physics of acoustic cavitation in liquids, in Physical Acoustics, Vol. IB, Mason, W. P., ed., Academic Press, New York, 1964, pp. 57–172.Google Scholar
  16. Foster, K. R., and Wiederhold, M. L., Auditory responses in cats produced by pulsed ultrasound, J. Acoust. Soc. Am. 63, 1199–1205, 1978.PubMedCrossRefGoogle Scholar
  17. Fry, F. J., Kossoff, G., Eggleton, R. C., and Dunn, F., Threshold ultrasonic dosages for structural changes in the mammalian brain, J. Acoust. Soc. Am. 48, 1413–1417, 1970.PubMedCrossRefGoogle Scholar
  18. Gershoy, A., and Nyborg, W. L., Perturbation of plant-cell contents by ultrasonic micro–irradiation, J. Acoust. Soc. Am. 54, 1356–1367, 1973.CrossRefGoogle Scholar
  19. Gershoy, A., Miller, D. L., and Nyborg, W. L., Intercellular gas: its role in sonated plant tissue, in Ultrasound in Medicine, Vol. 2, White, D., and Barnes, R., eds. Plenum, New York, 1976, pp. 505–511.Google Scholar
  20. Gor’kov, L. P., On the forces acting on a small particle in an acoustical field in an ideal fluid, Soviet Phys.-Doklady 6, 773, 1962.Google Scholar
  21. Goss, S. A., Frizzell, L. A., Dunn, F., and Dines, K. A., Dependence of the ultrasonic properties of biological tissues on constituent proteins, J. Acoust. Soc. Am. 67, 1041–1044, 1980.CrossRefGoogle Scholar
  22. Hill, C. R., Clarke, P. R., Crowe, M. R., and Hammick, J. W., Biophysical effects of cavitation in a 1 MHz ultrasonic beam, in Ultrasonics for Industry Conference Papers 1969, Iliffe, London, 1969, pp. 26–30.Google Scholar
  23. Krizan, J. E., and Williams, A. R., Non-equilibrium co-operative model for a biomembrane under hydrodynamic shear, Collective Phenomena 2, 229–234, 1977.Google Scholar
  24. Lele, P. P., Ultrasonic teratology in mouse and man, Proceedings of the Second European Congress on Ultrasonics in Medicine, Munich, 1975; Ex-cerpta Medica, Amsterdam-Oxford.Google Scholar
  25. Martin, C. J., Gemmell, H. G., and Watmough, D. J., A study of streaming in plant tissue induced by a doppler fetal heart detector, Ultrasound Med. Biol. 4, 131–138, 1978.PubMedCrossRefGoogle Scholar
  26. Miller, D. L., An instrument for microscopical observation of biophysical effects of ultrasound, PhD Thesis, University of Vermont, 1976.Google Scholar
  27. Miller, D. L., The effects of ultrasonic activation of gas bodies in Elodea leaves during continuous and pulsed irradiation at 1 MHz, Ultrasound Med. Biol. 3, 221–240, 1977.PubMedCrossRefGoogle Scholar
  28. Miller, D. L., Nyborg, W. L., and Whitcomb, C. C., Platelet aggregation induced by ultrasound under specialized conditions in vitro, Science 205, 505–507, 1979.PubMedCrossRefGoogle Scholar
  29. Miller, D. L., Instrument for microscopical observation of the biophysical effects of ultrasound, J. Acoust. Soc. Am. 60, 1203–1212, 1976.PubMedCrossRefGoogle Scholar
  30. Miller, D. L., Cell death thresholds in Elodea for 0.45–10 MHz ultrasound compared to gas–body resonance theory, Ultrasound Med. Biol. 5, 351–357, 1979.PubMedCrossRefGoogle Scholar
  31. Nyborg, W. L., Radiation pressure on a small rigid sphere, J. Acoust. Soc. Am. 42, 947–952, 1967.CrossRefGoogle Scholar
  32. Nyborg, W. L., Intermediate Biophysical Mechanics, Cummings, Menlo Park, California, 1975. A relatively simple derivation of Eq. (3.7) is given in Chapter 14.Google Scholar
  33. Nyborg, W. L., Physical Mechanisms for Biological Effects of Ultrasound, HEW Publication (FDA) 78–8062, Bureau of Radiological Health, Rockville, Md. 20857, September 1977.Google Scholar
  34. Nyborg, W. L., Physical Principles of Ultrasound, in Ultrasound: Its Applications in Medicine and Biology, Fry, F. J., ed., Elsevier, New York, 1978.Google Scholar
  35. Nyborg, W. L., Miller, D. L., and Gershoy, A., Physical consequences of ultrasound in plant tissues and other biosystems, in Fundamental and Applied Aspects of Nonionizing Radiation, Michaelson, S. M., Miller, M. W., Magin, R., and Carstensen, E. L., eds., Plenum, 1976, pp. 277–299.Google Scholar
  36. Nyborg, W. L., Gershoy, A., and Miller, D. L., Interaction of ultrasound with simple biological systems, in Proceedings of Ultrasonics International, IPC Science and Technology Press, Guildford, 1977.Google Scholar
  37. O’Brien, Jr., W. D., Ultrasonic Dosimetry, in Ultrasound: Its Applications in Medicine and Biology, Fry, F. J., ed., Elsevier, New York, 1978.Google Scholar
  38. Pond, J., The role of heat in the production of ultrasonic focal lesions, J. Acoust. Soc. Am. 47, 1607–1611, 1970.PubMedCrossRefGoogle Scholar
  39. Robinson, T., and Lele, P. P., An analysis of lesion development in the brain and in plastics by high intensity ultrasound at low megahertz frequencies, J. Acoust. Soc. Am. 51, 1333–1351, 1972.PubMedCrossRefGoogle Scholar
  40. Rooney, J. A., Hemolysis near an ultrasonically pulsating gas bubble, Science 169, 869–871, 1970.PubMedCrossRefGoogle Scholar
  41. Rooney, J. A., and Nyborg, W. L., Acoustic radiation pressure in a travelling plane wave, Amer.J. Phys. 40, 1825–1830, 1972.CrossRefGoogle Scholar
  42. Rooney, J. A., Determination of acoustic power outputs in the microwatt– milliwatt range, Ultrasound Med. Biol. 1, 13 — 16, 1973.CrossRefGoogle Scholar
  43. Rooney, J. A., Hydrodynamic shearing of biological cells, J. Biol. Phys. 2, 26–40, 1976.CrossRefGoogle Scholar
  44. Rumscheidt, F. D., and Mason, S. G., Particle motions in sheared suspensions. XXI. Deformation and burst of fluid drops in shear and hyperbolic flow, J. Colloid Sci. 16, 238–261, 1961.CrossRefGoogle Scholar
  45. ter Haar, G., and Wyard, G. T., Blood cell banding in ultrasonic standing wave fields: A physical analysis, Ultrasound Med. Biol. 4, 111–123, 1978.PubMedCrossRefGoogle Scholar
  46. Williams, A. R., Hughes, D. E., and Nyborg, W. L., Hemolysis near a transversely oscillating wire, Science 169, 871–873, 1970.PubMedCrossRefGoogle Scholar
  47. Williams, A. R., Release of serotonin from human platelets by acoustic microstreaming, J. Acoust. Soc. Am. 56, 1640–1643, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© The HUMANA Press Inc. 1982

Authors and Affiliations

  • Wesley L. Nyborg
    • 1
  1. 1.Physics DepartmentUniversity of VermontBurlingtonUSA

Personalised recommendations