Skip to main content

Control of Intercellular Communication via Gap Junctions

  • Conference paper
Cellular Communication During Ocular Development

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

  • 41 Accesses

Abstract

The gap junction is an extremely common structure which, it is generally accepted, mediates intercellular communication (cf. Bennett & Goodenough, 1977). While the function of the intercellular exchange mediated by gap junctions may be very different in various tissues, organisms and developmental stages, many of the structural, biochemical and physiological properties of gap junctions are generalizable across large phyletic distances and from one tissue to another. Gap junctions are found throughout the animal kingdom, from organisms as phylogentically primitive as porifera (thin sections: Revel & Goodenough, 1970; freeze fracture, Ginzberg & Morales, unpublished) to those as advanced as arthropods, molluscs, and higher vertebrates (cf. Staehelin, 1974). At least some cells in virtually all vertebrate organ systems are linked by gap junctions. Notable groups of cells that are not coupled include striated muscle fibers, differentiating spermatozoa, circulating erythrocytes and specific neurons (cf. Gilula, 1978; Revel, 1978). The near ubiquity of the gap junction and its evolutionary conservation imply a fundamental importance of this structure to cellular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amsterdam, A. and J.D. Jamieson. 1974. Studies on dispersed pancreatic exocrine cells: I. Dissociation technique and morphologic characteristics of separated cells. J. Cell Biol. 63: 937–1056.

    Google Scholar 

  • Albertini, D.F. and E. Anderson. 1974. The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J. Cell Biol. 53: 234–250.

    Article  Google Scholar 

  • Bennett, M.V.L. 1966. Physiology of electrotonic junctions. Ann. N.Y. Acad. Sci. 137: 509–539.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.V.L. 1973. Function of electrotonic junctions in embryonic and adult tissues. Fed. Proc. 32: 65–75.

    PubMed  CAS  Google Scholar 

  • Bennett, M.V.L. 1973. Permeability and structure of electrotonic junctions and intercellular movement of tracers. In: “Intracellular Staining Techniques in Neurobiology”. (Eds. S.B. Kater and C. Nicholson.) pp. 115–133, Elsevier, New York.

    Google Scholar 

  • Bennett, M.V.L. 1978. Junctional permeability. In: “Intercellular Junctions and Synapses”. (Eds. J. Feldman, N.B. Gilula and J.D. Pitts.) pp. 25–36, Chapman and Hall, London.

    Google Scholar 

  • Bennett, M.V.L., J.E. Brown, A.L. Harris and D.C. Spray. 1978. Electrotonic junctions between Fundulus blastomeres: Reversible block by low intracellular pH. Biol. Bull. 155: 442.

    Google Scholar 

  • Bennett, M.V.L., and D.A. Goodenough. 1978. Gap junctions, electrotonic coupling, and intercellular communication. Neurosci. Res. Prog. Bull. 16: 373:486.

    Google Scholar 

  • Bennett, M.V.L., M.E. Spira and G.D. Pappas. 1972. Properties of electrotonic junctions between embryonic cells of Fundulus. Devel. Biol. 29: 419–435.

    Article  CAS  Google Scholar 

  • Bennett, M.V.L., M.E. Spira and D.C. Spray. 1978b. Permeability of gap junctions between embryonic cells of Fundulus: A reevaluation. Devel. Biol. 65: 114–128.

    Article  CAS  Google Scholar 

  • Bennett, M.V.L., D.C. Spray and A.L. Harris. 1981. Electrical coupling in development. Amer. Zool. 21: 413–427.

    CAS  Google Scholar 

  • Browne, C.L., H.S. Wiley and J.N. Dumont. 1979. Oocyte-follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability. Science 203: 182–185.

    Article  PubMed  CAS  Google Scholar 

  • Carew, T.J. and E.R. Kandel. 1976. Two functional effects of decreased conductance EPSPs: synaptic augmentation and increased electrotonic coupling. Science 192: 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Cavney, S. 1974. Intercellular communication in a positional field. Movement of small ions between insect epidermal cells. Devel. Biol. 40: 311–322.

    Article  Google Scholar 

  • Cavoto, F.V. and B.A. Flaxman. 1973. Low-resistance pathways between mitotic and interphase epidermal cells in vitro. J. Cell Biol. 58: 223–225.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, J. 1980. Specification in the developing eye for orientation of mapping to the brain. Trends Neurosci. 3: 45–48.

    Article  Google Scholar 

  • Decker, R.S. 1976. Hormonal regulation of gap junction differentiation. J. Cell Biol. 69: 669–685.

    Article  PubMed  CAS  Google Scholar 

  • DeMello, W.C. 1975. Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol. 250: 231–245.

    CAS  Google Scholar 

  • Duguid, J. and J.P. Revel. 1976. The protein components of the gap junction. Cold Spring Harbor Symp. Quant. Biol. 40: 45–47.

    PubMed  CAS  Google Scholar 

  • Elias, P.M. and Friend, D.S. 1976. Vitamin-A-induced mucous metaplasia. An in vitro system for modifying tight and gap junction differentiation. J. Cell Biol. 68: 173–188.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, M., J.D. Sheridan and R.G. Johnson. 1977. Formation of low-resistance junctions in vitro in the absence of protein synthesized ATP production. Exp. Cell Res. 104: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, R.F. and D.A. Goodenough. 1981. Five-hour half-life of mouse liver gap-junction protein. J. Cell Biol. 90: 521–526.

    Article  PubMed  CAS  Google Scholar 

  • Finbow, M., S.B. Yancey, R. Johnson, and J.P. Revel. 1980. Independent lines of evidence suggesting a major gap junctional protein with a molecular weight of 26,000. Proc. Natl. Acad. Sci., U.S.A. 77: 970–974.

    Article  PubMed  CAS  Google Scholar 

  • Fishbach, G.D., Henkart, M.P., Cohen, S.A., J. Breuer, J. Whysner and F.M. Neal. 1974. Studies on the development of neuromuscular junctions in cell culture. In: “Synaptic Transmission and Neuronal Interaction”. (Ed. M.V.L. Bennett.) pp. 259–283, Raven Press, New York.

    Google Scholar 

  • Furshpan, E.J. and D.D. Potter. 1968. Low-resistance junctions between cells in embryos and tissue culture. Curr. Topics Devel. Biol. 3: 95–127.

    Article  CAS  Google Scholar 

  • Garfield, R.E., M.S. Kanman and E.E. Daniel. 1980. Gap junction formation in myometrium: control by estrogens, progesterone and prostaglandins. Am. J. Physiol. 238: C81–89.

    PubMed  CAS  Google Scholar 

  • Gierer, A. 1977. Biological features and physical concepts of pattern formation exemplified by hydra. Curr. Topics Devel. Biol. 11: 16–59.

    Google Scholar 

  • Gilula, N.B. 1977 Gap junctions and cell communication. In: “International Cell Biology”. (Eds. B. Brinkley and K. Porter.) pp. 61–69, Rockefeller Univ. Press, New York.

    Google Scholar 

  • Gilula, N.B., O.R. Reeves and A.B. Steinbach. 1972. Metabolic coupling, ionic coupling and cell contacts. Nature 235: 262–265.

    Article  PubMed  CAS  Google Scholar 

  • Ginzberg, R.D. and N.B. Gilula. 1979. Modulation of cell junctions during differentiation of the chicken otocyst sensory epithelium. Devel. Biol. 68: 110–129.

    Article  CAS  Google Scholar 

  • Goodenough, D.A. and N.B. Gilula. 1974. The splitting of hepatocyte junctions and zonulae occludentes with hypertonic disaccharides. J. Cell Biol. 61: 575–590.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, C.S. and Spitzer, N.C. 1979. Embryonic development of identified neurons: Differentiation from neuroblast to neurone. Nature 280: 208–214.

    Article  PubMed  CAS  Google Scholar 

  • Griepp, E.B. and M. Bernfield. 1978. Acquisition of synchronous beating between embryonic heart cell aggregates and layers. Exp. Cell Res. 113: 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen, C.J.P. and H.C. Schaller. 1979. Hydra as a model organism for the study of morphogenesis. Trends Biochem. Sci. 4: 265–276.

    Article  Google Scholar 

  • Hanna, R.B., P.G. Model, D.C. Spray, A.L. Harris and M.V.L. Bennett. 1980. Gap junctions in early amphibian embryo. Amer. J. Anat. 158: 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, R.B., G.D. Pappas and M.V.L. Bennett. 1972. Structural changes associated with increased coupling resistance in the septate axon of the crayfish. Biol. Bull. 157: 370.

    Google Scholar 

  • Hanna, R.B., T.S. Reese, R.L. Ornberg, D.C. Spray and M.V.L. Bennett. 1981. Fresh-frozen gap junctions: Structural detail in coupled and uncoupled states. J. Cell Biol. 91: 125a.

    Article  Google Scholar 

  • Hanna, R.B., D.C. Spray, P.G. Model, A.L. Harris and M.V.L. Bennett. 1978. Ultrastructure and physiology of gap junctions of an amphibian embryo; effects of CO2. Biol Bull. 155: 442.

    Google Scholar 

  • Harris, A.L., D.C. Spray and M.V.L. Bennett. 1981. Kinetic properties of a voltage dependent junctional conductance. J. Gen. Physiol. 77: 95–117.

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg, E.L. 1980. Biochemical and immunological approaches to the study of gap junctional communication. In Vitro 16: 1057–1067.

    Google Scholar 

  • Hertzberg, E.L. and N.B. Gilula. 1979. Isolation and characterization of gap junctions from rat liver. J. Biol. Chem. 254: 2138–2147.

    PubMed  CAS  Google Scholar 

  • Hess, R. and R. Weingart. 1980. Intracellular free calcium modified by pHi in sheep cardiac Purkinje fibres. J. Physiol. 307: 60S–61P.

    Google Scholar 

  • Heuser, J.E., T.S. Reese and D.M.D. Landis. 1975. Preservation of synaptic structure by quick freezing. Cold Spring Harbor Symp. Quant. Biol. 40: 17–24.

    Google Scholar 

  • Hunt, R.K. and M. Jacobson. 1974. Neuronal specificity revisited. Curr. Topics Devel. Biol. 8: 203–259.

    Article  CAS  Google Scholar 

  • Iwatsuki, N. and O.H. Petersen. 1979. Pancreatic acinar cells: The effect of carbon dioxide, ammonium chloride, and acetylcholine on intercellular communication. J. Physiol. 291: 317–326.

    PubMed  CAS  Google Scholar 

  • Jacobson, M. 1980. Clones and compartments in the vertebrate central nervous system. Trends Neurosci. 3: 3–5

    Google Scholar 

  • Johnson, R., J. Hammer, J. Sheridan and J.P. Revel. 1974. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc. Natl. Acad Sci., U.S.A. 71: 4536–4540.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, M.F., S.A. Simon and F. Ramon. 1980. Interaction of anesthetics, with electrical synapses. Nature 286: 498–500.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A. 1980. Molecular properties of nicotinic acetylcholine receptors. Cell Surface Rev. In press.

    Google Scholar 

  • Kelly, A.M. and S.J. Zacks. 1969. The fine structure of motor endplate morphogenesis. J. Cell Biol. 42: 154–169.

    Article  PubMed  CAS  Google Scholar 

  • Landmesser, L. and G. Pilar. 1972. The onset and development of transmission in the chick ciliary ganglion. J. Physiol. 222: 691–713.

    PubMed  CAS  Google Scholar 

  • Lane, N.J. and L.S. Swales. 1980. Dispersal of junctional particles, not internalization, during in vivo disappearance of gap junctions. Cell 19: 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R.J., J.H. Gainer and R.J. Przybylski. 1974. Transfer of newly synthesized proteins from Schwann cells to the squid giant axon. Proc. Nat. Acad. Sci. 71: 1188–1192.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, T.S., W.H. Beers and N.B. Gilula. 1978. Transmission of hormonal stimulation by cell-to-cell communication. Nature 272: 501–506.

    Article  PubMed  CAS  Google Scholar 

  • Lo, C.W. and N.B. Gilula. 1980. Gap junctional communication in the post-implantation mouse embryo. Cell 18: 411–422.

    Article  Google Scholar 

  • LoPresti, V., E.R. Macagno and C. Levinthal. 1974. Structure and development of neuronal connections in isogenic organisms: Transient gap junctions between growing optic axons and lamina neuroblasts. Proc. Nat. Acad. Sci. 71: 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, G.O. 1980. Jellyfish neurobiology since Romanes. Trends Neurosci. 2: 13–16.

    Google Scholar 

  • Makowski, L., D.L.D. Caspar, W.C. Phillips and D.A. Goodenough. 1977. Gap junction structure. II. Analysis of the X-ray diffraction data. J. Cell Biol. 74: 629–645.

    Article  PubMed  CAS  Google Scholar 

  • MacMahon, D. 1973. A cell contact model for position determination in development. Proc. Nat. Acad. Sci., U.S.A. 70: 2396–2400.

    Article  Google Scholar 

  • Meda, P., A. Perrelet and L. Orci. 1979. Increase in gap junctions between pancreatic β-cells during stimulation of insulin secretion. J. Cell Biol. 82: 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Meier, S. and E.D. Hay. 1974. Control of differentiation by extracellular materials. Collagen as a promotor and stabilizer of epithelial stroma production. Devel. Biol. 38: 249–270.

    Article  CAS  Google Scholar 

  • Merk, F.B. and N.S. McNutt. 1972. Nexus junctions between dividing and interphase granulosa cells of the rat ovary. J. Cell Biol. 55: 511–515.

    Article  PubMed  CAS  Google Scholar 

  • Messenger, E.A. and A.E. Warner. 1979. The function of the sodium pump during differentiation of amphibian embryonic neurons. J. Physiol. 292: 85–105.

    PubMed  CAS  Google Scholar 

  • Mobly, W.C., A.C. Server, D.N. Ishii, R.R. Riopelle and E.M. Shooter. 1977. Nerve growth factor. New Eng. J. Med. 297:1149–1158.

    Article  Google Scholar 

  • Ne’eman, Z., M.E. Spira and M.V.L. Bennett. 1980. Formation of gap and tight junctions between reaggregated blastomeres of the killifish, Fundulus. Amer. J. Anat. 158: 251–262.

    Article  PubMed  Google Scholar 

  • Neher, E. and C.F. Stevens. 1977. Conductance fluctuations and ionic pores in membranes. Ann. Rev. Biophys. Bioeng. 6: 345–372.

    Article  CAS  Google Scholar 

  • Nicolson, B.J., M.W. Hunkapiller, L.E. Hood and J.P. Revel. 1980. Partial sequencing of the gap junctional protein from rat lens and liver. J. Cell Biol. 87: 200a.

    Google Scholar 

  • O’Lague, P., H. Dalen, H. Rubin and C. Tobias. 1970. Electrical coupling: Low-resistance junctions between mitotic and interphase fibroblasts in tissue culture. Science 170: 464–466.

    Article  PubMed  Google Scholar 

  • Page, E. and Y. Shibata. 1981. Permeable junctions between cardiac cells. Ann. Rev. Physiol. 43: 431–441.

    Article  CAS  Google Scholar 

  • Patterson, P.H. and L.L.Y. Chun. 1977. The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium. Devel. Biol. 56: 263–280.

    Article  CAS  Google Scholar 

  • Perrachia, C. 1980. Structural correlates of gap junction permeation. Int. Rev. Cytol. 66: 81–146.

    Article  Google Scholar 

  • Pitts, J.C. and J.W. Simms. 1977. Permeability of junctions between animal cells. Intercellular transfer of nucleotides but not of macromolecules. Exp. Cell Res. 104: 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Raviola, E., D.G. Goodenough and G. Raviola. 1981. Structure of rapidly frozen gap junctions. J. Cell Biol. 87: 273–279.

    Article  Google Scholar 

  • Revel., J.P. 1978. Morphological and chemical organization of gap junctions. In: “Ninth International Congress on EM”, Vol. III, (Ed. J.M. Sturgess,) pp. 651–672.

    Google Scholar 

  • Revel, J.P. and D.A. Goodenough. 1970. Cell coats and intercellular matrix. In: “Chemistry and Molecular Biology of Intercellular Matrix”. (Ed. E.A. Balasz.) pp. 1361–1369, Academic Press, New York.

    Google Scholar 

  • Revel, J.P., E.B. Griepp, M. Finbow and R. Johnson. 1978. Possible steps in gap junction formation. Zool. 6: 139–144.

    Google Scholar 

  • Revel, J.P. and M. Karnovsky. 1967. Hexagonal arrays of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: 7–12.

    Article  Google Scholar 

  • Rink, T.J., R.Y. Tsien and A.E. Warner. 1980. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature 283: 658–660.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, J.D., G. Zampighi and S.A. Simon. 1981. Biophysical studies of mammalian lens junctions. Biophys. J. 33: 77a.

    Google Scholar 

  • Rose, B. and W.R. Loewenstein. 1975. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature 254: 250–252.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, J. 1978. Junction formation and experimental modification. In: “Intercellular Junctions and Synapses”. (Eds., J. Feldman, N.B. Gilula and J.D. Pitts.) pp. 37–60, Chapman and Hall, London.

    Google Scholar 

  • Simpson, I., B. Rose and W.R. Loewenstein. 1977. Size limit of molecules permeating the junctional membrane channels. Science 195: 294–296.

    Article  PubMed  CAS  Google Scholar 

  • Sotolo, C., R. Llinas and R. Baker. 1974. Structural study of inferior olivary nucleus of the cat: Morphological correlates of electrotonic coupling between neurons. Brain Research 37: 294–300.

    Google Scholar 

  • Spira, M.E. and M.V.L. Bennett. 1972. Synaptic control of electrotonic coupling between neurons. Brain Research 37:

    Google Scholar 

  • Spira, M.E., D.C. Spray and M.V.L. Bennett. 1980. Synpatic organization of expansion motoneurons of Navanax inermis. Brain Research 195: 241–269.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer, N.C. 1980. Electrical uncoupling of vertebrate spinal cord neurons during development. Soc. Neurosci. Abstr. 6: 287.

    Google Scholar 

  • Spray, D.C., A.L. Harris and M.V.L. Bennett. 1979. Voltage dependence of junctional conductance in early amphibian embryos. Science 204: 432–434.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D.C., A.L. Harris and M.V.L. Bennett. 1981a. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211: 712–715.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D.C., A.L. Harris and M.V.L. Bennett. 1981b. Equilibrium properties of a voltage dependent junctional conductance. J. Gen. Physiol. 77: 77–93.

    Article  PubMed  CAS  Google Scholar 

  • Spray, D.C., A.L. Harris, R.L. White and M.V.L. Bennett. 1981c. Glutaraldehyde differentially affects gap junctional conductance and its pH and voltage dependence. Biophys. J. 33: 108a.

    Google Scholar 

  • Spray, D.C., A.L. Harris, R.L. White and M.V.L. Bennett. 1981d. Pharmacologically distinct sites mediate voltage and pH dependence of gap junctional conductance. Int. Biophys. Congr. Abst., p. 155.

    Google Scholar 

  • Spray, D.C., J.H. Stern, A.L. Harris and M.V.L. Bennett. 1982a. Gap junctional conductance: Comparison of sensitivities to H and Ca ions. Proc. Nat. Acad. Sci. U.S.A., in press.

    Google Scholar 

  • Spray, D.C., A.L. Harris and M.V.L. Bennett. 1982b. Comparison of pH and Ca dependence of gap junctional conductance. In: “Intracellular pH”. (Eds. R. Nuccitelli and D. Deamer.) Alan R. Liss, New York, in press.

    Google Scholar 

  • Staehelin, L.A. 1974. Structure and function of intercellular junctions. Int. Rev. Cytol. 39: 191–274.

    Article  PubMed  CAS  Google Scholar 

  • Stern, J.H., D.C. Spray, A.L. Harris and M.V.L. Bennett. 1980. Gap junctions: Quantitative comparison of reduction in conductance by H and by Ca ions in a perfused preparation. Biol. Bull. 159: 493.

    Google Scholar 

  • Stewart, W.W. 1981. Lucifer dyes — highly fluorescent dyes for biological staining. Nature 292: 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Turin, L. and A.E. Warner. 1978. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270: 56–57.

    Article  Google Scholar 

  • Tsien, R.W. and R. Weingart. 1976. Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut end method. J. Physiol. 260: 117–141.

    PubMed  CAS  Google Scholar 

  • Unwin, P.N.T. and G. Zampighi. 1980. Structure of the junction between communicating cells. Nature 283: 545–549.

    Article  PubMed  CAS  Google Scholar 

  • Warner, A.E. 1973. The electrical properties of the ectoderm in the amphibian embryo during induction and early development of the nervous system. J. Physiol. 235: 267–286.

    PubMed  CAS  Google Scholar 

  • Warner, A.E. 1979. Consequences of cell to cell signals in the early embryo. In: “The Role of Intercellular Signals: Navigation, Encounter, Outcome”. (Ed. J.G. Nicholls,) pp. 179–200. Verlag Chemie, Berlin.

    Google Scholar 

  • Weingart, R., P. Hess and W.R. Reber. 1981. Influence of intracellular pH on cell-to-cell coupling in sheep Purkinje fibers. In: “International Symposium on Normal and Abnormal Conduction in the Heart.” Eds. H. Hoffman, M. Lieberman and A. Paes de Carvalho. Elsevier Publ. Co., Amsterdam, in press.

    Google Scholar 

  • Williams, E.H. and R.L. Dettaan. 1981. Electrical coupling among heart cells in the absence of ultrastructurally defined gap junctions. J. Membr. Biol. 60: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. 1978. Gap junctions: Channels for communication in development. In: “Intercellular Junctions and Synapses”. (Eds. J. Feldman, N.B. Gilula and J.C. Pitts,) pp. 83–94. Chapman and Hall, London.

    Google Scholar 

  • Wolpert, L., A. Hornbruck and M.R.B. Clark. 1974. Positional information and positional signalling in hydra. Amer. Zool. 14: 647–663.

    Google Scholar 

  • Wood, R.L. 1979. The fine structure of the hypostome and mouth of hydra. II. Transmission electron microscopy. Cell Tissue Res 199: 319–338.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, R.I. and Telfer, W.H. 1980. Electrophoresis of proteins in intercellular bridges. Nature 286: 84–86.

    Article  PubMed  CAS  Google Scholar 

  • Yee, A.G. and J.P. Revel. 1978. Loss and reappearance of gap junctions in regenerating liver. J. Cell Biol. 78: 554–564.

    Article  PubMed  CAS  Google Scholar 

  • Zipser, B. 1979. Voltage-modulated membrane resistance in coupled leech neurons. J. Neurophysiol. 42: 465–475.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this paper

Cite this paper

Spray, D.C., Harris, A.L., Bennett, M.V.L. (1982). Control of Intercellular Communication via Gap Junctions. In: Sheffield, J.B., Hilfer, S.R. (eds) Cellular Communication During Ocular Development. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5764-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5764-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5766-0

  • Online ISBN: 978-1-4612-5764-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics