Skip to main content

The Development of Specificity of Retinal Central Connections: Changing Concepts

  • Conference paper
Cellular Communication During Ocular Development

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

  • 42 Accesses

Abstract

The above-cited statement describes perhaps most elegantly the initial concept of how neurons may form synaptic connections. In the decades following Cajal’s observation, it was recognized that vertebrate neurons send their axons in the embryonic CNS to form highly specific point-to-point connections with specific types of target neurons at particular loci in the brain (for review, see Gaze, 1970; Jacobson, 1978; and Lund, 1978). For the present review, fundamental work apparently started with Sperry’s observation of the early 1940’s. Sperry (1943, 1944) found that when the optic nerve of lower vertebrates was cut or crushed, the optic fibers regenerated back to their original position. This conclusion was based upon behavioral testing of the animals following eye rotation and consideration of other surgical procedures. Later Sperry (1950) wrote “the optic fibers differ from one another in quality according to the particular locus of the retina in which the ganglion cells are located. The retina apparently undergoes a polarized field-like differentiation within the retina and the tectum during development, which brings about specification of the ganglion cells and the tectal cells.”

From the functional point of view the growth cone of the retinal ganglion cells may be regarded as a sort of club or battering ram, endowed with exquisite chemical sensitivity, with rapid amoeboid movements, and with a certain impulsive force, thanks to which it is able to press forward and overcome obstacles met in its way, forcing cellular interstices until it arrives at its destination.

Ramon y Cajal, 1899, pp. 544–545

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckwith, C.J. 1927. The effect of the extirpation of the lens rudiment on the development of the eye in Amblystoma punctatum with special reference to choroidal fissure. J. Exp. Zool. 49: 217–259.

    Article  Google Scholar 

  • Bodick, N. and C. Levinthal. 1980. Growing optic nerve fibers follow neighbours during embryogenesis. Proc. Natl. Acad. Sci., U.S.A. 77: 4374–4378.

    Article  PubMed  CAS  Google Scholar 

  • Cima, C. and P. Grant. 1978. Ultrastructure evidence of early retinal ganglion cell differentiation in Xenopus laevis. Soc. for Neuroscience Abst. 4: 622.

    Google Scholar 

  • Gaze, R.M. 1970. The Formation of Nerve Connections. Academic Press, New York.

    Google Scholar 

  • Gaze, R.M., J.D. Feldman, J. Cook and S.H. Chung. 1979. The orientation of the visuotectal map in Xenopus: developmental aspects. J. Embryol. Exp. Morph. 53: 39–66.

    PubMed  CAS  Google Scholar 

  • Goldberg, S. 1976a. Progressive fixation of morphological polarity in the developing retina. Develop. Biol. 53: 126–127.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, S. 1976b. Polarization of the avian retina. Ocular transplantation studies. J. Comp. Neurol. 168: 379–392.

    Article  PubMed  CAS  Google Scholar 

  • Halfter, W., M. Claviez and U. Schwarz. 1981. Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites. Nature. 292: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Holt, C. 1980. Cell movement in Xenopus eye development. Nature. 287: 850–852.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R.K. 1975. Developmental programming for retinotectal patterns. pp. 131–150. In “Cell Patterning”, Ciba Foundation Symposium 29,, Elsevier, New York.

    Google Scholar 

  • Hunt, R.K., and M. Jacobson. 1972a. Development and stability of positional information in Xenopus retinal ganglion cells. Proc. Natl. Acad. Sci. U.S.A. 69: 780–783.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R.K. and M. Jacobson. 1972b. Specification of positional information in retinal ganglion cells of Xenopus: stability of the unspecified state. Proc. Natl. Acad. Sci. U.S.A. 69: 2860–2864.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R.K. and M. Jacobson. 1973a. Specification of positional information in retinal ganglion cells of Xenopus: Assay system for analysis of the unspecified state. Proc. Natl. Acad. Sci. U.S.A. 70: 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R.K. and M. Jacobson. 1973b. Neuronal locus specificity: Altered pattern of spatial deployment in fused fragments of embryonic Xenopus eyes. Science. 180: 509–511.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R.K. and M. Jacobson. 1974. Specification of positional information in retinal ganglion cells of Xenopus laevis: intra-ocular control of the time of specification. Proc. Natl. Acad. Sci. U.S.A. 71: 3616–3620.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. 1968a. Development of neuronal specificity in retinal ganglion cells of Xenopus. Develop. Biol. 17: 202–218.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. 1968b. Cessation of DNA synthesis in retinal ganglion cells correlated with the time of specification of their central connections. Develop. Biol. 17: 219–232.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. 1978. Developmental Neurobiology. 2nd Ed. Plenum Press. New York.

    Google Scholar 

  • Lund, R.D. 1978. Development and Plasticity of the Brain. Oxford University Press. New York.

    Google Scholar 

  • McDonald, N. 1977. A polar coordinate system for positional information of the vertebrate neural retina. J. Theor. Biol. 69: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Moscona, A.A. 1976. In “Neuronal Recognition” (ed. Barondes, J.S.) pp. 205ff Plenum Press, New York.

    Google Scholar 

  • Rager, G.H. 1980. Development of the retinotectal projection in the chicken. Adv. Anat. Embryo1. Cell. Biol. 63: 1–92.

    Google Scholar 

  • Ramon y Cajal, S. 1899–1904. “Textura del sistema nervioso del hombre y del los vertebrados·estudios sobre el plan estructural y composicion histologica de los centros nerviosos, adicimados de-consideraciones fisiologicas fundadas in los nuevos des cubrimientos.” Vol. 1. 556 pp. Madrid. N. Moya.

    Google Scholar 

  • Sato, T. 1933. Über die Determination der fetal Augenspalts bei Triton taeniatus. Arch. F. Entwmech. d. Org., Bd. 128: 342–377.

    Article  Google Scholar 

  • Schmidt, J.t. 1978. Retinal fibers alter tectal positional markers during the expansion of the half retinal projection in goldfish. J. Comp. Neurol. 177: 279–300.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, J.H. 1979. Nerve fiber topography in the retinal projection to the tectum. Nature 278: 620–624.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S.C. 1972. Retinotectal connections of a heterotopic eye. Nature. 238: 286–287.

    Article  CAS  Google Scholar 

  • Sharma, S.C. 1981. Retinal projection in a non-visual area after bilateral tectal ablation in goldfish. Nature. 291: 66–67.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S.C. and J.G. Hollyfield. 1974a. Specification of retinal central connections in Rana pipiens before the appearance of the first post-mitotic ganglion cells. J. Comp. Neurol. 155: 395–408.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S.C. and J.G. Hollyfield. 1974b. The retinotectal projection in Xenopus laevis following right-left exchange of eye rudiment. Soc. for Neuroscience. Abst. 4: 421.

    Google Scholar 

  • Sharma, S.C. and J.G. Hollyfield. 1980. Specification of retino-tectal connections during development of the toad Xenopus laevis. J. Embryol. Exp. Morph. 55: 77–92.

    PubMed  CAS  Google Scholar 

  • Sperry, R.W. 1943. Visuomotor coordination in the newt (Triturus viridescens) after regeneration of the optic nerves. J. Comp. Neurol. 79: 33–55.

    Article  Google Scholar 

  • Sperry, R.W. 1944. Optic nerve regeneration with return of vision in anurans. J. Neurophysiol. 7: 57–69.

    Google Scholar 

  • Sperry, R.W. 1945. Restoration of vision after uncrossing of optic nerves and after contralateral transposition of the eye. J. Neurophysiol. 8: 15–28.

    Google Scholar 

  • Sperry, R.W. 1950. Neuronal specificity. pp. 232–239. In “Genetic Neurology” (P. Weiss, ed.). Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Stone, L.S. 1966. Development, polarization and regeneration of the ventral iris cleft (remnant of choroid fissure) and protractor lentis muscle in urodele eyes. J. Exp. Zool. 161: 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Szekely, G. 1954. Zür Ausbildung der lokalen funktionellen Spezifitat der Retina. Acta Biol. Hung. 5: 157–167.

    Google Scholar 

  • Trisler, G.D., M.D. Schneider and M. Nirenberg. 1981. A topographic gradient of molecules in retina can be used to identify neuron position. Proc. Natl. Acad. Sci. U.S.A. 78: 2148–2149.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this paper

Cite this paper

Sharma, S.C. (1982). The Development of Specificity of Retinal Central Connections: Changing Concepts. In: Sheffield, J.B., Hilfer, S.R. (eds) Cellular Communication During Ocular Development. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5764-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5764-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5766-0

  • Online ISBN: 978-1-4612-5764-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics