The Linear Model

  • Allen Mclntosh
Part of the Lecture Notes in Statistics book series (LNS, volume 10)


Suppose that we are to analyze n measurements or observations y i to see how they depend upon q other sets of measurements or observations FlF q If F j is considered quantitative, we will refer to it as a variate. If F j is considered qualitative, we will refer to it as a factor, and use the notation n j to denote the number of levels of F j . (In other words, n j is the number of classes into which F j divides the n measurements y.) In the balance of this report, we will deal almost exclusively with analysis of variance models, that is, models in which all the F j are factors. Models in which some of the F j are variates will be referred to as analysis of covariance models. We will use the phrase factorial design to describe any experiment in which all (or nearly all) of the combinations of the factors FlF q are of interest. Depending on the nature of the factors or the design, a nested model might well be appropriate in such a design.


Generalize Linear Model Canonical Correlation Full Rank Canonical Variable Estimation Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Allen Mclntosh
    • 1
  1. 1.Bell Telephone Laboratories, Inc.New JerseyUSA

Personalised recommendations