Skip to main content

The Thermodynamics of Supercritical Fluid Systems

  • Chapter
Advances in Physical Geochemistry

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 2))

Abstract

The aim of the present paper is to discuss briefly the results of investigations into the thermodynamics of a model of natural fluids. These investigations have been conducted over the past decade in the laboratory of hydrothermal systems at the Institute of Experimental Mineralogy, USSR Academy of Sciences. Scientists have long been interested in hydrothermal solutions due to their importance in the formation of many ore bodies and of virtually all metamorphic, metasomatic, and magmatic rocks in the earth’s crust. One should be aware, however, that natural processes involving a fluid phase are very complex, involving too many problems to be covered adequately in one paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bach, R. W., Friedrichs, and Rau, H. (1977) P-V-T relations for HC1-H2O mixtures up to 500°C and 1500 bars, H. Temp.-H. Pressure 9, 305–312.

    Google Scholar 

  • Barnes, H. H., and Ernst, W. G. (1963) Ideality and ionization in hydrothermal fluids: the system MgO-H2O-NaOH, Amer. J. Sci. 261, 129–150.

    Article  Google Scholar 

  • Basaev, A. R., Skripka, V. G., and Namiot, A. U. (1974) Volume properties of mixtures water vapor with methane and nitrogene at high temperatures and pressures, J. Phys. Chem. 12, 1631–1674 (in Russian).

    Google Scholar 

  • Breedveld, G. J. F., and Pransnitz, J. M. (1973) Thermodynamic properties of supercritical fluids and their mixtures at very high pressures, AIChE J. 19, 783–796.

    Article  Google Scholar 

  • Burnham, W., Holloway, J. R., and Davis, N. F. (1969) Thermodynamic properties of water to 1000°C and 10000 bars, Geol. Soc. Amer. Spec. Pap. No. 132.

    Google Scholar 

  • Coan, C. R., and King, A. D. J. (1971) Solubility of water in compressed carbon dioxide, nitrons oxide and ethare; Evidence of hydration of carbon dioxide and nitrons oxide in He gas phase. J. Am. Chem. Soc. 93, 1857–1862.

    Article  Google Scholar 

  • de Santis, R., Breedveld, G., and Pranshitz, J. M. (1974) Thermodynamic properties of aqueous gas mixtures at advanced pressures, Ind. Eng. Chem. Pros. Des. Dev. 13, 374–377.

    Article  Google Scholar 

  • Flowers, G. (1979) Correction of Holloway’s (1977), “Adaptation of the modified Redlich-Kwong equation of state for calculation of the fugacities of molecular species in supercritical fluids of geological interest,” Contrib. Miner. Petrol. 69, 315–318.

    Article  Google Scholar 

  • Franck, E. U., and Tödhaide, P. (1959) Thermische Eigenschaften überkritischer Mischungen von Kohlendioxid und Wasser bis zu 750°C und 2000 Atm., Z. Phys. Chem., Neue Folge 22, 232–245.

    Article  Google Scholar 

  • Frantz, J. D., and Marshall, W. L. (1979) Electrical conductance studies of MgCl2-H2O and CaCl2-H2O solution, Geophys. Lab. Carnegie Inst. Washington Yearbook 1978–1979, 591–599, 603-606, and 586-591.

    Google Scholar 

  • Gehrig, M. (1980) Phasengleichgewichte und P-V-T-Daten ternarer Mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550°C, Thes. Diss. Hochschule Verlag, Freiburg.

    Google Scholar 

  • Greenwood, H. J. (1969) The compressibility of gaseous mixtures of carbon dioxide and water between 0 and 500 bars pressures and 450° and 800°C, Amer. J. Sci. 267-A, 191–208.

    Google Scholar 

  • Hirchfelder, J. O., Curtiss, C. F., and Bird, B. B. (1954) Molecular Theory of Gases and Liquids. Wiley, New York.

    Google Scholar 

  • Jüza, J., Kmonicek, V., and Sifner, O. (1965) Measurements of the specific volume of carbon dioxide in the range of 700 to 4000 bar and 50 to 475°C. Physica, 31, 1735–1744.

    Article  Google Scholar 

  • Korzhinskii, D. S. (1940) The factors of mineral equilibria and mineralogical depth faciès, Akad. Nauk USSR, M., Inst. Geol. Nauk 12, 100 (in Russian).

    Google Scholar 

  • Lentz, H., and Franck, E. U. (1969) Das System Wasser-Argon bei hohen Drucken und Temperaturen, Bericht, de. Buseny. 73, 28–35.

    Google Scholar 

  • Likhoijdov, G. G., Ivanov, I. P., and Shmulovich, K. J. (1977) The stability of analcime and activity of H2O in the system NaAlSi2O2-H2O-CO2, Int. Geol. Rev. 19.

    Google Scholar 

  • Malinin, S. D. (1979) Physical Chemistry of Hydrothermal Systems with Carbon Dioxide, Nauka, Moscow.

    Google Scholar 

  • Marakushev, A. A., and Perchuk, L. L. (1975) Thermodynamical calculations of gaseous and gaseous-mineral equilibria in application to the problem of fluid formation, Geodynamic Studies, No. 3, pp. 46–66, 1625-1639. Nauka, Moscow.

    Google Scholar 

  • Melnik, U. P. (1978) Thermodynamic Properties of Gases under the Conditions of Deep-Seated Petrohenesis, Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Michels, A., Michels, and Wonters, H. (1935) Isotherms of carbon dioxide between 70 and 3000 atmospheres (Amagat densities between 200 and 600), Proc. Roy. Soc. Ser. A 153, 214–224.

    Article  Google Scholar 

  • Namiot, A. U., Skripka, V. G., and Ashman, K. D. (1979) The influence of aqueous salts on solubility of methane at temperatures from 50° to 350°C, Geokhymia No. 1, 147–148 (in Russian).

    Google Scholar 

  • Ryzenko, B. N., and Malinin, S. D. (1971) The fugacity rule in the system CO2-H2O, CO2-CH4, CO2-N2, CO2-H2, Geokhymia No. 8, 899–913 (in Russian).

    Google Scholar 

  • Shaw, H. R. (1963) Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis, Science 139, 1220–1222.

    Article  Google Scholar 

  • Shmonov, V. M. (1977) The apparatus for measuring PVT properties of gases up to 1000°K and 8000 bars, Ocherki Phys.-Chem. Petrol. 1, 236–245 (in Russian).

    Google Scholar 

  • Shmonov, V. M., and Shmulovich, K. I. (1974) Molar volumes and equations of state for CO2 between 100°C–1000°C and 2000–10000 bars, Dokl. Akad. Sci. USSR 217, 935–938.

    Google Scholar 

  • Shmonov, V. M., and Shmulovich, K. I. (1978) Measurement of PVT properties for the system H2O-CO2 at 500° and pressures up to 5 kbars, in Experiment and Technique of High Gaseous and Solid-Phase Pressures, edited by I. P. Ivanov and I. A. Litvin, pp. 133–137. Nauka, Moscow (in Russian).

    Google Scholar 

  • Shmulovich, K. I., and Shmonov, V. M. (1978) Tables of Thermodynamic Properties of Gases and Liquids, Vol. 3, Carbon Dioxide. Isdatelstvo Standartov, Moscow (in Russian).

    Google Scholar 

  • Shmulovich, K. I., Shmonov, V. M., and Zakirov, I. W. (1979) PVT-measurements in a hydrothermal system at high pressures and temperatures, in The Methods of Experimental Studies of Hydrothermal Equilibria, edited by A. A. Godovikov, pp. 81–89. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Shmulovich, K. I., Masur, V. A., Kalinichev, A. G., and Khodorevskaja, I. (1980a) Relations PVT and activity-concentration in the systems H2O-nonpolar gas type, Geokhimia No. 11, 1625–1639 (in Russian).

    Google Scholar 

  • Shmulovich, K. I., Shmonov, V. M., Masur, V. A., and Kalinichev, A. G. (1980b) Relations PVT, activity-concentration in the system H2O-CO2, (homogeneous solution), Geokhimiya, No. 12, 1807–1824 (in Russian).

    Google Scholar 

  • Shmulovich, K. I., and Kotova, N. P. (1980) The influence of electrolytes on the activity of CO2 in supercritical aqueous solutions, Dokl. Acad. Nauk USSR 253, 952–956 (in Russian).

    Google Scholar 

  • Takenouchi, S., and Kennedy, G. (1965) The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures, Amer. J. Sci. 263, 445.

    Article  Google Scholar 

  • Touret, J., and Bottinga, Y. (1979) Equation d’etat pour le CO2; application aux idusions carboni quus, Bull. Mineral. 102, 577–583.

    Google Scholar 

  • Tzyklis, D. S., Linshits, L. R., and Zimmerman, S. S. (1969) Measurement and computation of molar volumes for carbon dioxide. Phys. Chem. 43, 1919–1926 (in Russian).

    Google Scholar 

  • Urusova, M. A. (1971) Activity water in solutions of alkali-halide salts at advanced temperatures, Isv. Acad. Nauk USSR, Ser. Chem. 6, 1145–1149 (in Russian).

    Google Scholar 

  • Vukalovich, M. P., and Altunin, V. V. (1965) Thermophysical Properties of Carbon Dioxide. Atomisdat, Moscow (in Russian).

    Google Scholar 

  • Walter, L. S. (1963) Data on the fugacity of CO2 in mixtures of CO2 and H2O, Amer. J. Sci. 261, 151–156.

    Article  Google Scholar 

  • Zakirov, I. V. (1977) Experimental apparatus and method for measuring CO2 compressibility to 2500 bars and 1100°K, Ocherki Physico-Chemical Petrology, Vol. 7, pp. 28–33 (in Russian).

    Google Scholar 

  • Zharikov, V. A., Shmulovich, K. I., and Bulatov, V. K. (1977) Experimental studies in the system CaO-MgO-Al2O5-SiO2-CO2-H2O and conditions of high-temperature metamorphism, Tectonophysics 43, 145–162.

    Article  Google Scholar 

  • Zubarev, V. N., and Telegin, G. C. (1962) Shock compression of liquid nitrogen and solid carbon dioxide, Dokl. Acad. Nauk USSR 142, 309–312.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Shmulovich, K.I., Shmonov, V.M., Zharikov, V.A. (1982). The Thermodynamics of Supercritical Fluid Systems. In: Saxena, S.K. (eds) Advances in Physical Geochemistry. Advances in Physical Geochemistry, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5683-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5683-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5685-4

  • Online ISBN: 978-1-4612-5683-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics