The Thermodynamics of Supercritical Fluid Systems

  • K. I. Shmulovich
  • V. M. Shmonov
  • V. A. Zharikov
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 2)


The aim of the present paper is to discuss briefly the results of investigations into the thermodynamics of a model of natural fluids. These investigations have been conducted over the past decade in the laboratory of hydrothermal systems at the Institute of Experimental Mineralogy, USSR Academy of Sciences. Scientists have long been interested in hydrothermal solutions due to their importance in the formation of many ore bodies and of virtually all metamorphic, metasomatic, and magmatic rocks in the earth’s crust. One should be aware, however, that natural processes involving a fluid phase are very complex, involving too many problems to be covered adequately in one paper.


Activity Coefficient Hydrothermal System Nauk USSR Natural Fluid Fugacity Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach, R. W., Friedrichs, and Rau, H. (1977) P-V-T relations for HC1-H2O mixtures up to 500°C and 1500 bars, H. Temp.-H. Pressure 9, 305–312.Google Scholar
  2. Barnes, H. H., and Ernst, W. G. (1963) Ideality and ionization in hydrothermal fluids: the system MgO-H2O-NaOH, Amer. J. Sci. 261, 129–150.CrossRefGoogle Scholar
  3. Basaev, A. R., Skripka, V. G., and Namiot, A. U. (1974) Volume properties of mixtures water vapor with methane and nitrogene at high temperatures and pressures, J. Phys. Chem. 12, 1631–1674 (in Russian).Google Scholar
  4. Breedveld, G. J. F., and Pransnitz, J. M. (1973) Thermodynamic properties of supercritical fluids and their mixtures at very high pressures, AIChE J. 19, 783–796.CrossRefGoogle Scholar
  5. Burnham, W., Holloway, J. R., and Davis, N. F. (1969) Thermodynamic properties of water to 1000°C and 10000 bars, Geol. Soc. Amer. Spec. Pap. No. 132.Google Scholar
  6. Coan, C. R., and King, A. D. J. (1971) Solubility of water in compressed carbon dioxide, nitrons oxide and ethare; Evidence of hydration of carbon dioxide and nitrons oxide in He gas phase. J. Am. Chem. Soc. 93, 1857–1862.CrossRefGoogle Scholar
  7. de Santis, R., Breedveld, G., and Pranshitz, J. M. (1974) Thermodynamic properties of aqueous gas mixtures at advanced pressures, Ind. Eng. Chem. Pros. Des. Dev. 13, 374–377.CrossRefGoogle Scholar
  8. Flowers, G. (1979) Correction of Holloway’s (1977), “Adaptation of the modified Redlich-Kwong equation of state for calculation of the fugacities of molecular species in supercritical fluids of geological interest,” Contrib. Miner. Petrol. 69, 315–318.CrossRefGoogle Scholar
  9. Franck, E. U., and Tödhaide, P. (1959) Thermische Eigenschaften überkritischer Mischungen von Kohlendioxid und Wasser bis zu 750°C und 2000 Atm., Z. Phys. Chem., Neue Folge 22, 232–245.CrossRefGoogle Scholar
  10. Frantz, J. D., and Marshall, W. L. (1979) Electrical conductance studies of MgCl2-H2O and CaCl2-H2O solution, Geophys. Lab. Carnegie Inst. Washington Yearbook 1978–1979, 591–599, 603-606, and 586-591.Google Scholar
  11. Gehrig, M. (1980) Phasengleichgewichte und P-V-T-Daten ternarer Mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550°C, Thes. Diss. Hochschule Verlag, Freiburg.Google Scholar
  12. Greenwood, H. J. (1969) The compressibility of gaseous mixtures of carbon dioxide and water between 0 and 500 bars pressures and 450° and 800°C, Amer. J. Sci. 267-A, 191–208.Google Scholar
  13. Hirchfelder, J. O., Curtiss, C. F., and Bird, B. B. (1954) Molecular Theory of Gases and Liquids. Wiley, New York.Google Scholar
  14. Jüza, J., Kmonicek, V., and Sifner, O. (1965) Measurements of the specific volume of carbon dioxide in the range of 700 to 4000 bar and 50 to 475°C. Physica, 31, 1735–1744.CrossRefGoogle Scholar
  15. Korzhinskii, D. S. (1940) The factors of mineral equilibria and mineralogical depth faciès, Akad. Nauk USSR, M., Inst. Geol. Nauk 12, 100 (in Russian).Google Scholar
  16. Lentz, H., and Franck, E. U. (1969) Das System Wasser-Argon bei hohen Drucken und Temperaturen, Bericht, de. Buseny. 73, 28–35.Google Scholar
  17. Likhoijdov, G. G., Ivanov, I. P., and Shmulovich, K. J. (1977) The stability of analcime and activity of H2O in the system NaAlSi2O2-H2O-CO2, Int. Geol. Rev. 19. Google Scholar
  18. Malinin, S. D. (1979) Physical Chemistry of Hydrothermal Systems with Carbon Dioxide, Nauka, Moscow.Google Scholar
  19. Marakushev, A. A., and Perchuk, L. L. (1975) Thermodynamical calculations of gaseous and gaseous-mineral equilibria in application to the problem of fluid formation, Geodynamic Studies, No. 3, pp. 46–66, 1625-1639. Nauka, Moscow.Google Scholar
  20. Melnik, U. P. (1978) Thermodynamic Properties of Gases under the Conditions of Deep-Seated Petrohenesis, Naukova Dumka, Kiev (in Russian).Google Scholar
  21. Michels, A., Michels, and Wonters, H. (1935) Isotherms of carbon dioxide between 70 and 3000 atmospheres (Amagat densities between 200 and 600), Proc. Roy. Soc. Ser. A 153, 214–224.CrossRefGoogle Scholar
  22. Namiot, A. U., Skripka, V. G., and Ashman, K. D. (1979) The influence of aqueous salts on solubility of methane at temperatures from 50° to 350°C, Geokhymia No. 1, 147–148 (in Russian).Google Scholar
  23. Ryzenko, B. N., and Malinin, S. D. (1971) The fugacity rule in the system CO2-H2O, CO2-CH4, CO2-N2, CO2-H2, Geokhymia No. 8, 899–913 (in Russian).Google Scholar
  24. Shaw, H. R. (1963) Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis, Science 139, 1220–1222.CrossRefGoogle Scholar
  25. Shmonov, V. M. (1977) The apparatus for measuring PVT properties of gases up to 1000°K and 8000 bars, Ocherki Phys.-Chem. Petrol. 1, 236–245 (in Russian).Google Scholar
  26. Shmonov, V. M., and Shmulovich, K. I. (1974) Molar volumes and equations of state for CO2 between 100°C–1000°C and 2000–10000 bars, Dokl. Akad. Sci. USSR 217, 935–938.Google Scholar
  27. Shmonov, V. M., and Shmulovich, K. I. (1978) Measurement of PVT properties for the system H2O-CO2 at 500° and pressures up to 5 kbars, in Experiment and Technique of High Gaseous and Solid-Phase Pressures, edited by I. P. Ivanov and I. A. Litvin, pp. 133–137. Nauka, Moscow (in Russian).Google Scholar
  28. Shmulovich, K. I., and Shmonov, V. M. (1978) Tables of Thermodynamic Properties of Gases and Liquids, Vol. 3, Carbon Dioxide. Isdatelstvo Standartov, Moscow (in Russian).Google Scholar
  29. Shmulovich, K. I., Shmonov, V. M., and Zakirov, I. W. (1979) PVT-measurements in a hydrothermal system at high pressures and temperatures, in The Methods of Experimental Studies of Hydrothermal Equilibria, edited by A. A. Godovikov, pp. 81–89. Nauka, Novosibirsk (in Russian).Google Scholar
  30. Shmulovich, K. I., Masur, V. A., Kalinichev, A. G., and Khodorevskaja, I. (1980a) Relations PVT and activity-concentration in the systems H2O-nonpolar gas type, Geokhimia No. 11, 1625–1639 (in Russian).Google Scholar
  31. Shmulovich, K. I., Shmonov, V. M., Masur, V. A., and Kalinichev, A. G. (1980b) Relations PVT, activity-concentration in the system H2O-CO2, (homogeneous solution), Geokhimiya, No. 12, 1807–1824 (in Russian).Google Scholar
  32. Shmulovich, K. I., and Kotova, N. P. (1980) The influence of electrolytes on the activity of CO2 in supercritical aqueous solutions, Dokl. Acad. Nauk USSR 253, 952–956 (in Russian).Google Scholar
  33. Takenouchi, S., and Kennedy, G. (1965) The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures, Amer. J. Sci. 263, 445.CrossRefGoogle Scholar
  34. Touret, J., and Bottinga, Y. (1979) Equation d’etat pour le CO2; application aux idusions carboni quus, Bull. Mineral. 102, 577–583.Google Scholar
  35. Tzyklis, D. S., Linshits, L. R., and Zimmerman, S. S. (1969) Measurement and computation of molar volumes for carbon dioxide. Phys. Chem. 43, 1919–1926 (in Russian).Google Scholar
  36. Urusova, M. A. (1971) Activity water in solutions of alkali-halide salts at advanced temperatures, Isv. Acad. Nauk USSR, Ser. Chem. 6, 1145–1149 (in Russian).Google Scholar
  37. Vukalovich, M. P., and Altunin, V. V. (1965) Thermophysical Properties of Carbon Dioxide. Atomisdat, Moscow (in Russian).Google Scholar
  38. Walter, L. S. (1963) Data on the fugacity of CO2 in mixtures of CO2 and H2O, Amer. J. Sci. 261, 151–156.CrossRefGoogle Scholar
  39. Zakirov, I. V. (1977) Experimental apparatus and method for measuring CO2 compressibility to 2500 bars and 1100°K, Ocherki Physico-Chemical Petrology, Vol. 7, pp. 28–33 (in Russian).Google Scholar
  40. Zharikov, V. A., Shmulovich, K. I., and Bulatov, V. K. (1977) Experimental studies in the system CaO-MgO-Al2O5-SiO2-CO2-H2O and conditions of high-temperature metamorphism, Tectonophysics 43, 145–162.CrossRefGoogle Scholar
  41. Zubarev, V. N., and Telegin, G. C. (1962) Shock compression of liquid nitrogen and solid carbon dioxide, Dokl. Acad. Nauk USSR 142, 309–312.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • K. I. Shmulovich
  • V. M. Shmonov
  • V. A. Zharikov

There are no affiliations available

Personalised recommendations